EconPapers    
Economics at your fingertips  
 

Multi-objective decision-making for efficient utilization of water and fertilizer in paddy fields: A case study in Southern China

Keji Hua, Jun He, Bin Liao, Tianzhong He, Peng Yang and Lei Zhang

Agricultural Water Management, 2023, vol. 289, issue C

Abstract: Effective water and fertilizer management modes (WFMMs) are crucial for mitigating non-point source pollution, enhancing grain quality, and improving resource utilization in paddy fields. Nevertheless, screening WFMMs that can effectively synergize these benefits is challenging, particularly in the wake of climate change. A two-year lysimeter experiment was conducted to investigate the effects of WFMMs on water balance components, nitrogen and phosphorus loss loads, grain yield and quality, and nitrogen utilization efficiency. Four treatments were established, including flooding irrigation (FI) and alternate wetting and drying irrigation (AWD), paired with conventional fertilizers (CF) and sulfur-coated fertilizer (SCF). A multi-criteria evaluation framework was developed to assess the potential values of WFMMs under diverse hydrological conditions using the vertical and horizontal scattering degree method. The results indicated that the AWD regime increased irrigation and drainage by approximately 8% compared to CF during the wet season, while reducing irrigation, percolation, and augmenting capillary rise during the dry season. Irrigation had not a significant effect on rice yield and quality. Compared to CF, AWD significantly increased nitrogen accumulation at maturity and nitrogen recovery efficiency by 20% and 31% on average. The SCF had a significant effect on the nitrogen accumulation at maturity, nitrogen recovery efficiency, N partial factor productivity, yield (increased 8–9% across two years), and protein content (increased ∼8% across two years), but at the cost of higher leachate concentration when compared to CF. Integration of AWD and SCF treatments demonstrates the potential for improved water productivity, yield, and nitrogen utilization efficiency, along with an enhanced ability to purify pollutants. The vertical and horizontal scattering degree method assessment showed that the AWD+SCF treatment exhibits superior performance in water saving, pollution reduction, yield and quality, and nitrogen efficient utilization, which was amplified during the dry season. These findings offer novel perspectives for optimizing WFMMs under varying hydrological conditions in hilly areas of Southern China.

Keywords: Alternate wetting and drying irrigation; Slow-release fertilizer; Non-point source pollution; Rice quality; Optimization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377423003724
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423003724

DOI: 10.1016/j.agwat.2023.108507

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423003724