EconPapers    
Economics at your fingertips  
 

Development and performance evaluation of an APP for vegetable fertilization and irrigation management originated from EU-Rotate_N

Xiangying Xu, Chao Wang, Hongjiang Wang, Yonglong Zhang, Zhuangzhuang Cao, Zhiping Zhang, Haibo Dai and Minmin Miao

Agricultural Water Management, 2023, vol. 289, issue C

Abstract: Overapplication of nitrogen fertilizer and water in vegetable production is popular and serious in China and other developing countries, leading to severe environmental pollution. To date, most model-based decision support systems, which are believed to be powerful tools for improving fertilizer and water management in vegetable production, have been established by developed countries, and the weather, soil, hydrology, facility type and vegetable species of developing countries have been less considered. In this study, a water level component and a new vegetable species, pakchoi (Brassica campestris ssp. Chinese) were incorporated into EU-Rotate_N, a simulation model developed by the European Union for open field vegetable cultivation. The experiment was carried out in typical vegetable plastic tunnels in Jiangsu Province, China, an area with high groundwater level. The results indicated that the water level algorithm which differentiate the soil into saturated and unsaturated layers enhanced the model simulation accuracy of the soil nitrogen and water content in the 30 cm soil layer, indicating the significant influence of groundwater on the soil water and nutrient movement. The pakchoi experiment suggest that new vegetables could be added into the crop list of EU-Rotate_N by adjusting parameters with ‘trial and error’ methods after considering its biological characteristics. Furthermore, a novel module was added for recommendations of fertilization and irrigation on daily basis in accordance with reasonable upper and lower thresholds of soil water content and soil available nitrogen after a series of adjustment. Finally, a user-friendly application (APP) was developed based on the improved model. The evaluation experiments in 2021 and 2022 showed that APP could significantly improve nitrogen and water use efficiency without obvious yield loss in pakchoi production. We conclude that simulation models for vegetable fertilizer and water management established by developed countries could be modified by several operable steps to expand its application area.

Keywords: Model simulation; Shallow groundwater level; Nitrogen; Irrigation; Pakchoi; APP (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377423003852
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423003852

DOI: 10.1016/j.agwat.2023.108520

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423003852