EconPapers    
Economics at your fingertips  
 

Optimizing water conservation and utilization with a regulated deficit irrigation strategy in woody crops: A review

Yu Chen, Jian-Hua Zhang, Mo-Xian Chen, Fu-Yuan Zhu and Tao Song

Agricultural Water Management, 2023, vol. 289, issue C

Abstract: This review emphasizes the significance of combining regulated deficit irrigation (RDI) with woody crops, as they have higher water productivity (WP) and are tolerant to mild water deficits. After conducting the analysis, it was found that for most woody crops, reducing irrigation water by 20.0–30.0% has a negligible impact on yield, typically within a variation range of 10.0%, and it leads to an increase in WP of 10.0–30.0%. When irrigation water is reduced by 40.0–50.0%, the impact on yield varies significantly depending on the species, but the WP generally approaches its highest value; in general, it can increase by 25.0% or more and sometimes even exceed 50.0%. However, when irrigation water is further reduced, it significantly affects yield, and there is a limited increase or even decrease in WP. Moreover, adjusting irrigation amounts during noncritical water demand periods minimizes the impact on yield and fruit size, enhancing water-saving effectiveness. Water-saving techniques trigger various plant responses, improving resistance to water deficits, promoting reproductive growth, and protecting against drought-related damage. Despite potential yield reductions, ongoing research demonstrates positive outcomes in WP, crop yield, and fruit quality in various woody crops. Water-saving techniques offer economic benefits through cost savings and pest reduction, while finding the appropriate balance between water use, yield, and quality is vital for agricultural success and sustainable water resource management. Moreover, water-saving techniques optimize nutrient uptake and heavy metal absorption in woody crop agricultural systems, addressing heavy metal stress, soil salinization, and emissions. Combining multiple irrigation methods, such as partial root-zone drying (PRD), shows immense potential in water conservation and impact on fruits. Integrating PRD with innovative techniques, such as precision irrigation or sensor-based systems, promises remarkable water savings and optimized crop yields, revolutionizing agricultural practices and addressing water scarcity challenges for sustainable irrigation management.

Keywords: Regulated deficit irrigation; Woody crops; Water productivity; Fruit yield; Fruit quality; Economic benefits (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377423003888
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423003888

DOI: 10.1016/j.agwat.2023.108523

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423003888