EconPapers    
Economics at your fingertips  
 

Deficit drip irrigation improves kiwifruit quality and water productivity under rain-shelter cultivation in the humid area of South China

Shunsheng Zheng, Shouzheng Jiang, Ningbo Cui, Lu Zhao, Daozhi Gong, Yaosheng Wang, Zongjun Wu and Quanshan Liu

Agricultural Water Management, 2023, vol. 289, issue C

Abstract: Comprehending crop responses to water deficit at different growth stages is crucial for developing effective irrigation strategies. Different water deficit treatments (WDTs) were applied to the kiwifruit vines to investigate the effect of water deficit during different growth stages on the fruit quality, yield, and water productivity (WP); subsequently, the technique for order preference by similarity to an ideal solution method (TOPSIS) was employed to determine optimal treatments for kiwifruit cultivation. A total of 17 irrigation treatments were applied, including one control treatment (CTL, full irrigation) and four WDTs (denoted as D15%, D25%, D35%, and D45% respectively) during the bud burst to leafing (I), flowering to fruit set (II), fruit expansion (III), and fruit maturation (IV) stages. Results showed that WDTs during I, II, III, and IV decreased evapotranspiration (ET) over the whole growth period of kiwifruit vines by 1.2–3.8, 1.5–4.4, 4.7–14.3, and 6.9–21.3% compared with CTL, respectively. WDTs during stages I and II increased fruit volume (Vf) and fruit weight (FW), while exhibiting no significant impact on yield, WP, and chemical quality of kiwifruit. WDTs during stage III improved fruit firmness (Fn), total soluble solids (TSS), and titratable acidity (TA); however, it also caused severe reduction in Vf, FW, yield, and WP. Appropriate WDTs during stage IV significantly improved Fn, TSS, TA, vitamin C (Vc), and WP without compromising Vf, FW, and yield of kiwifruit. The IV-D25% treatment was determined to be the optimal treatment for improving fruit quality and WP of kiwifruit while maintaining yield, which increased TSS, TA, Vc, and WP by 9.1, 6.1, 19.2, 4.6%, respectively; the combination of D25%, D25%, full irrigation, and D25% treatments during stages I, II, III, and IV should be a viable irrigation strategy to simultaneously achieve high yield, quality, and WP of kiwifruit.

Keywords: Water deficit; Kiwifruit vine; Growth stage; Fruit quality; Kiwifruit yield (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377423003955
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423003955

DOI: 10.1016/j.agwat.2023.108530

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423003955