EconPapers    
Economics at your fingertips  
 

Exploring the effects of subsoiling tillage under various irrigation regimes on the evapotranspiration and crop water productivity of winter wheat using RZWQM2

Shiyu Wei, Naikun Kuang, Fengli Jiao, Rui Zong and Quanqi Li

Agricultural Water Management, 2023, vol. 289, issue C

Abstract: Food security is an important pre-requisite for human well-being; however, water shortages and poor quality of arable land threaten food security in the North China Plain (NCP). Subsoiling and proper irrigation can improve soil structure and increase crop yield. This study investigated the effects of two tillage methods (rotary tillage at 15 cm depth, R15; subsoiling at 35 cm depth, S35) combined with three irrigation treatments (no irrigation during the winter wheat growing season, I0; 60 mm irrigation at the jointing stage, I1; 60 mm irrigation at both the jointing and heading stages, I2) on soil moisture dynamics, evapotranspiration, and winter wheat yield. The Root Zone Water Quality Model (RZWQM2) was adopted after calibration and validation base on a field experiment. The results showed that the normalized root mean square errors (calibration and test) between the actual and simulated values of soil water storage (SWS), evapotranspiration (ET), and yield were 7.45–10.87%, 3.80–7.21%, and 5.38–14.15%, respectively. Subsoiling improved winter wheat soil moisture conditions, yield, and crop water productivity (CWP), and irrigation during the winter wheat growing seasons increased crop yield (I2 > I1 > I0) and CWP (I1 > I2 > I0). The best yield treatment during the 2020–2022 winter wheat growing seasons was S35-I2. However, the CWP of S35-I1 was 2.67% higher than that of S35-I2. Tillage methods change the ET structure of winter wheat fields. Compared to rotary tillage, subsoiling reduced actual ET by 16.11% and increased actual transpiration by 10.44%. The results of this study indicate that subsoiling at a depth of 35 cm and 60 mm irrigation at the jointing stage could improve the CWP of winter wheat in the NCP.

Keywords: RZWQM2; Subsoiling; Soil moisture; Evapotranspiration; Yield; Winter wheat (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377423003967
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423003967

DOI: 10.1016/j.agwat.2023.108531

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423003967