EconPapers    
Economics at your fingertips  
 

The effect of alternate partial root-zone drying and deficit irrigation on the yield, quality, and physiochemical parameters of milled rice

Mabood Farhadi Machekposhti, Ali Shahnazari, Mostafa Yousefian, Mirkhalegh Z. Ahmadi, Mahmoud Raeini Sarjaz, Behrouz Arabzadeh, Ali Akbarzadeh and Brian G. Leib

Agricultural Water Management, 2023, vol. 289, issue C

Abstract: While paddy fields produce a high yield, they also require a large amount of water and produce a significant amount of methane. Therefore, the adoption of water-saving irrigation techniques for rice cultivation is critical. Furrowed rice farming may be a viable alternative to paddy rice cultivation. The objective of the present study was to evaluate the impact of alternate partial root-zone drying irrigation on rice yield, milled rice quality, and cooking quality under furrow rice cultivation. A two-year field trial was conducted on a local rice cultivar, Tarom Hashemi, in 2015 and 2016. Seven water regimes, including three levels of regulated deficit irrigation (RDI), three levels of alternate partial root-zone drying irrigation (APRDI), and conventional flooding irrigation (CFI), were used in this study. In RDI and APRDI treatments, plots were irrigated when soil matric potential had reached −0.1 (RDI1 and APRDI1), −0.3 (RDI3 and APRDI3), and −0.6 bar (RDI6 and APRDI6). RDI1 and APRDI1 treatments produced milled rice yield similar to the CFI, while irrigation water productivity (IWP) was significantly higher by 22.9% and 45.7%, respectively. Regardless of the soil water potential, the IWP in APRDI treatments was 16% higher than that of RDI treatments. Severe water stress (RDI6 and APRDI6) caused a marked increase in amylose content and alkali spreading value of milled rice resulting in improved cooking quality. Nitrogen uptake in APRDI treatments was 2% higher than that of RDI treatments. On average, methane emission per milled grain yield declined by 77.9% and 78.7% in RDI and APRDI treatments, respectively. Our data indicate that the expensive and laborious practice of puddling can be avoided to increase water productivity and improve rice quality without sacrificing yield. The results also show that furrow rice cultivation could significantly reduce the methane emission contribution of rice production.

Keywords: Nitrogen uptake; Flooding irrigation; Furrow rice cultivation; Amylose content; Methane emission; Irrigation water productivity (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377423004110
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423004110

DOI: 10.1016/j.agwat.2023.108546

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423004110