Ridge-furrow planting with black film mulching increases rainfed summer maize production by improving resources utilization on the Loess Plateau of China
Zhenqi Liao,
Chen Zhang,
Shuolei Yu,
Zhenlin Lai,
Haidong Wang,
Fucang Zhang,
Zhijun Li,
Peng Wu and
Junliang Fan
Agricultural Water Management, 2023, vol. 289, issue C
Abstract:
Soil mulching has been widely used to improve crop productivity around the world, but how various mulching practices affect soil hydrothermal conditions, water-temperature-radiation utilization and finally grain yield of rainfed maize has been poorly understood. A two-season field experiment was conducted on rainfed summer maize in 2021 and 2022 on the Loess Plateau of China, with six soil mulching practices: flat planting with non-mulching (FPNM), flat planting with full straw mulching (FPSM), flat planting with full black film mulching (FPBF), flat planting with full transparent film mulching (FPTF), ridge-furrow planting with black film mulching on the ridge (RFBF) and ridge-furrow planting with transparent film mulching on the ridge (RFTF). The results showed that compared with the traditional FPNM, the five mulching treatments (FPSM, FPBF, FPTF, RFBF and RFTF) greatly regulated root-zone soil hydrothermal conditions and resulted in obvious soil drying-wetting alternation, which significantly changed the daytime average root-zone soil temperature in the 0 – 25 cm soil layer (by − 1.1 ℃, − 1.9 ℃, + 2.7 ℃, − 1.6℃ and + 0.8 ℃, respectively) and significantly reduced crop evapotranspiration. The five mulching treatments promoted the root growth, leaf area index and canopy light interception rate due to the improved soil water and/or temperature conditions. The structural equation modeling indicated that soil hydrothermal condition and water-temperature-radiation use efficiency could directly or indirectly explain 98% of the grain yield variation under various soil mulching practices; radiation use efficiency (RUE) determined maize production in the water-sufficient year (2021), whereas maize production was mainly determined by crop water productivity (WP) in the water-limited year (2022). The RFBF increased maize production most, followed by RFTF. Compared with FPNM, RFBF increased leaf area index by 45.4%, canopy light interception rate by 19.1%, aboveground biomass by 68.8%, 1000-grain weight by 15.1%, grain yield by 58.6%, WP by 71.8%, thermal time use efficiency by 64.6% and RUE by 30.5%. In conclusion, RFBF optimized the root-zone soil hydrothermal conditions for root growth, which in turn promoted aboveground growth and water-temperature-radiation use efficiency, and finally improved the gain yield of rainfed summer maize on the Loess Plateau of China. Therefore, RFBF was considered as a promising agricultural practice to improve rain-fed summer maize production and resource utilization efficiency on the Loess Plateau of China.
Keywords: Root growth; Canopy light interception; Water productivity; Radiation use efficiency; Thermal time use efficiency (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377423004237
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423004237
DOI: 10.1016/j.agwat.2023.108558
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().