EconPapers    
Economics at your fingertips  
 

Irrigation practices affect relationship between reduced nitrogen fertilizer use and improvement of river and groundwater chemistry

Edoardo Severini, Monia Magri, Elisa Soana, Marco Bartoli, Marco Faggioli and Fulvio Celico

Agricultural Water Management, 2023, vol. 289, issue C

Abstract: In the last decades, the intensification of agricultural practices has deeply altered nitrogen (N) and water cycles. Climate change and drought events are expected to further increase the human impacts on the hydrological and biogeochemical cycles, and these impacts are gaining the attention of the scientific community. Here we show how the Chiese River watershed (Lombardy Region, Italy) represents an interesting opportunity to analyse the effects of traditional irrigation practices on N contamination in the context of water scarcity. During summer, flood irrigation is mostly sustained by groundwater withdrawal. Additional water withdrawals from the river contribute to the dry out of the Chiese River. The use of wells for irrigation over permeable and fertilized soils and the percolation of nitrate (NO3-) from the vadose zone to groundwater result in the accumulation of NO3- in groundwater and limited N losses via denitrification due to dominant oxic conditions. These practices contrast other measures targeting the reduction of N excess over arable land. In the Chiese River watershed, the N surplus from Soil System Budget calculations decreased by 43% since the early 2000 s but NO3- concentration in groundwater remained high and stable (up to 98.0 mg NO3- L−1). The dried-out Chiese River gains groundwater and NO3- concentration at the river mouth approaches 32.2 mg NO3- L−1. Our results suggest how the mismanagement of the watershed (overabundant fertilization and flood irrigation using groundwater) increases the N concentration both in the river and groundwater, leading to the violation of both Nitrate and Water Framework directives. We anticipate our assay to be a starting point for the conversion of the northern Po Plain to more efficient irrigation and fertilization practices to contrast severe droughts driven by climate change like the one who struck the Po Plain in summer 2022.

Keywords: Nitrate contamination; Spatiotemporal variation; Irrigation practices; River-groundwater interaction; Nitrogen hot spots; Climate change (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377423004298
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423004298

DOI: 10.1016/j.agwat.2023.108564

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423004298