EconPapers    
Economics at your fingertips  
 

Responses of winter wheat yield and water productivity to sowing time and plastic mulching in the Loess Plateau

Lihong Wu, Hao Quan, Lina Wu, Xi Zhang, Hao Feng, Dianyuan Ding and Kadambot H.M. Siddique

Agricultural Water Management, 2023, vol. 289, issue C

Abstract: On the Loess Plateau, unfavorable late-sowing conditions often arise due to late harvests from the previous season or excessive rainfall during the sowing season, which can delay seed germination, reduce tiller numbers, and decrease winter wheat yields. Few studies have explored whether plastic mulching (PM) can mitigate the adverse effects of late sowing. Consequently, we conducted a 3-year field experiment from 2017 to 2020 on the Loess Plateau combining two mulching conditions [PM and no mulching (NPM)] and three sowing times (normal, 10-day late, and 20-day late sowing). We investigated the combined influence of sowing time and mulching conditions on soil hydrothermal status, crop water productivity (WP), and yield. The results revealed that delayed sowing significantly prolonged emergence times and decreased tiller numbers, leaf area index (LAI), root biomass, and aboveground biomass (AGB). The PM increased soil temperatures, advancing wheat emergence and increasing tiller numbers. Plants under PM had higher LAI, root biomass, and AGB than those under NPM. Moreover, PM reduced ineffective transpiration by accelerating the degradation of ineffective tillers, resulting in higher yields without a corresponding increase in evapotranspiration. The beneficial effects extended to spike numbers, thousand-grain weight, and harvest index. Specifically, PM combined with 10-day late sowing increased yield by 12.8 % compared to NPM combined with normal sowing. Furthermore, under 20-day late sowing, PM mitigated yield losses, reducing them from a 28.7 % decline under NPM to a 12.8 % decline when compared to normal sowing under NPM. We conclude that PM completed compensated for the yield loss under 10-day late sowing and partially alleviated losses under 20-day late sowing. Therefore, combining 10-day late sowing (accumulated air temperature before winter > 430 °C d) with PM was the optimal approach for simultaneously improving yield and WP in winter wheat seasons with unfavorable late-sowing conditions.

Keywords: Sowing time; Water productivity; The Loess Plateau; Plastic mulching; Winter wheat (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377423004377
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423004377

DOI: 10.1016/j.agwat.2023.108572

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:289:y:2023:i:c:s0378377423004377