Drip fertigation with food waste biogas effluent in a humid area is possible but challenging due to increased soil soluble sodium
Na Li,
Hui Xi,
Yang Zhou,
Man Yu,
Zhenhua Hu and
Xijing Chen
Agricultural Water Management, 2023, vol. 290, issue C
Abstract:
To assess changes in soil salinity and salinity leaching following rainfall when food waste biogas effluent was used as a fertilizer in a humid region, a field experiment was conducted in 2020–2022 focused on broccoli drip fertigation with different percentages of biogas effluent. Five treatments consisted of 0% (CF), 25% (T25), 50% (T50), 75% (T75), and 100% (T100) biogas effluent blended with fresh water, with the same total N, P, and K. The experiment included a control (CK) that consisted of drip irrigation without fertilizer. The electrical conductivity of soil saturation paste extract (ECe), soluble sodium, sodium adsorption ratio (SAR), cation ratio of structural stability (CROSS), and broccoli yield were monitored. Drip fertigation with biogas effluent (electrical conductivity=19.0 dS/m) increased soil salinity and the ECe rose as the biogas effluent percentage increased, especially in the 0–20 cm soil profile. The T25, T50, T75, and T100 treatment ECe values were 1.2–2.2 times those of the CF treatment. Soluble sodium, SAR, and CROSS increased during the fertilization season. However, compared with CF, 25–100% biogas effluent drip fertigation did not significantly affect broccoli yield. During the post season, the soil salinity was effectively leached by rainwater. After one study year of rotation, there was almost no significant difference in ECe between treatments, but the soluble sodium, SAR, and CROSS values were significantly higher in T100 than in the CF treatment. In other words, when the total applied fresh water amount (including rainfall and irrigation) is more than 45–48 times the biogas effluent application amount (i.e., irrigation with a biogas effluent concentration of ≤75%), it may not significantly increase the soil soluble sodium. In conclusion, drip fertigation with biogas effluent can be used for broccoli fertigation in humid areas, and treatment with≤ 75% biogas effluent is suggested. Combined with the local rainfall depth, a biogas effluent application depth of ≤ 28–30 mm/year may be feasible.
Keywords: Saline water; Soil salinity; SAR; Broccoli (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377423004651
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:290:y:2023:i:c:s0378377423004651
DOI: 10.1016/j.agwat.2023.108600
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().