EconPapers    
Economics at your fingertips  
 

Development of an enhanced bidirectional recurrent neural network combined with time-varying filter-based empirical mode decomposition to forecast weekly reference evapotranspiration

Masoud Karbasi, Mehdi Jamei, Mumtaz Ali, Anurag Malik, Xuefeng Chu, Aitazaz Ahsan Farooque and Zaher Mundher Yaseen

Agricultural Water Management, 2023, vol. 290, issue C

Abstract: Evapotranspiration is one of agricultural water management's most significant and impactful hydrologic processes. A new multi-decomposition deep learning-based technique is proposed in this study to forecast weekly reference evapotranspiration (ETo) in western coastal regions of Australia (Redcliffe and Gold Coast). The time-varying filter-based empirical mode decomposition (TVF-EMD) technique was used to first break down the original meteorological variables/signals into intrinsic mode decomposition functions (IMFs), which included maximum and minimum temperature, relative humidity, wind speed, and solar radiation. Using a partial autocorrelation function (PACF), the significant lagged values were then calculated from the decomposed sub-sequences (i.e., IMFs). A novel Extra Tree- Boruta feature selection algorithm was used to extract important features from the decomposed IMFs. Four machine learning approaches, including bidirectional recurrent neural network (Bi-RNN), multi-layer perceptron neural network (MLP), random forest (RF), and extreme gradient boosting (XGBoost), were used to forecast weekly evapotranspiration using the TVF-EMD-based decomposed meteorological data. Different statistical metrics were applied to evaluate the model performances. The results showed that the decomposition of the input data by TVF-EMD significantly improved the accuracy compared with the non-decomposed inputs (single models without decomposition). The findings indicate that the TVF-BiRNN model, as presented, achieved the highest level of accuracy in simulating weekly ET0 at both the Redcliffe and Gold Coast stations (Redcliffe: R=0.9281, RMSE=3.8793 mm/week, MAPE = 9.2010%; Gold Coast: R=0.8717, RMSE=4.1169 mm/week, MAPE = 11.5408%). The novel hybrid modeling technique can potentially improve agricultural water management through its ability to generate more accurate ETo estimates weekly. The proposed methodology exhibits potential applicability to various other environmental and hydrological modeling issues.

Keywords: Evapotranspiration; Agriculture engineering; Deep learning; Boruta feature selection; Recurrent neural network (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377423004699
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:290:y:2023:i:c:s0378377423004699

DOI: 10.1016/j.agwat.2023.108604

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:290:y:2023:i:c:s0378377423004699