Biofilm dynamic changes in drip irrigation emitter flow channels using reclaimed water
Changjian Ma,
Mengyao Li,
Peng Hou,
Xuejun Wang,
Zeqiang Sun,
Yan Li,
Yang Xiao and
Yunkai Li
Agricultural Water Management, 2024, vol. 291, issue C
Abstract:
Reusing reclaimed water through drip irrigation offers an effective way to overcome freshwater scarcity. However, biofilm accumulation in the flow channel of drip emitters is the primary obstacle. So far, biofilm development in the emitters remains largely unknown. Here, industrial computed tomography was used to quantify the emitter biofilm developments. Results showed that biofilm typically accumulated in the inlet of the emitter flow channel and decreased toward the flow direction. Biofilm was also typically accumulated in dead areas having low flow velocities, such as edge, corner, and adjacent surface zones in flow channels. The dynamics of the emitter biofilm variation mechanisms were also elucidated. Specifically, particle and nutrient transport appeared to be dominant in shaping the initial biofilm formation (i.e., 5% emitter clogging degree), resulting in biofilm abundant in the inlet of the flow channel. However, it changed the hydraulic conditions in emitter flow channels, increased local water shear stress, which made the biofilm easier to be washed away in the inlet, and caused biofilm to grow faster in the middle and outlet regions of the flow channel at 20% emitter clogging degree. At 50% clogging degree, biofilm in inlet regions grew faster again. Finally, some biofilm control approaches such as water quality management and emitter flow channel structure optimization were proposed. This study provided a better understanding of biofilm formation mechanisms in the emitter flow channels, which is critical for designing appropriate biofilm control technologies and will facilitate the reuse of reclaimed water in agricultural irrigation.
Keywords: Emitter clogging; Biofouling; Biofilm distribution; Industrial computed tomography (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377423004894
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:291:y:2024:i:c:s0378377423004894
DOI: 10.1016/j.agwat.2023.108624
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().