EconPapers    
Economics at your fingertips  
 

Response of stomatal conductance to plant water stress in buffalograss seed production: Observation with UAV thermal infrared imagery

Chu Wang, Kai Zhu, YanYan Bai, ChenYan Li, Maona Li and Yan Sun

Agricultural Water Management, 2024, vol. 292, issue C

Abstract: Stomatal conductance (gs) is an indicator that allows for direct evaluation of plant water status, but it is challenging to achieve rapid monitoring in large-scale fields due to limitations in observation methods. Here this study was conducted to identify the thresholds of gs with different target yields and develop a gs-based water stress diagnostic model for buffalograss (Buchloe dactyloides (Nutt.) Engelm.) using UAV thermal infrared imagery for buffalograss in 2022 and 2023. The results of the field experiment demonstrated that the gs rapidly response to changes in the water stress status of buffalograss. The thresholds of gs were 403 and 385 mmol m−2 s−1 for the vegetative and reproductive growth stages, respectively, with the target seed yield of 1224 kg ha−1. The gs values were classified into three levels for the vegetative growth and four levels for the in reproductive growth stage of buffalograss, respectively. The canopy temperature depression response to water stress is consistent with the gs. Based on this relationship, this study developed a gs-based diagnostic model with a random forest algorithm for buffalograss. Furthermore, a spital map of gs was created using UAV thermal infrared imagery. The modification test results indicated that the model made a good estimation of gs were good with normalized root mean square errors of 15% in the vegetative stage and 11% in the reproductive stage, respectively. Therefore, it is feasible to use thermal infrared imagery for monitoring gs and evaluating the water stress of plants in buffalograss fields.

Keywords: Turfgrass; Seed yields; Canopy temperature depression; Threshold; Piecewise function; Water stress (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377423005267
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:292:y:2024:i:c:s0378377423005267

DOI: 10.1016/j.agwat.2023.108661

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:292:y:2024:i:c:s0378377423005267