EconPapers    
Economics at your fingertips  
 

Climate-smart irrigation strategy can mitigate agricultural water consumption while ensuring food security under a changing climate

Mengna Li, Shiwei Zhou, Shuaijie Shen, Jiale Wang, Yuhao Yang, Yangzhong Wu, Fu Chen and Yongdeng Lei

Agricultural Water Management, 2024, vol. 292, issue C

Abstract: North China Plain suffers from the world’s most severe water scarcity and groundwater depletion due to intensive irrigation for agricultural production. It is imperative to reduce irrigation water consumption while safeguarding crop production and food security. This study conducted a quantitative analysis with deficit irrigation strategies for winter wheat using a water-driven AquaCrop model. After model calibration and validation with field experimental data, we analyzed the irrigation water demand, crop yield, and water productivity (WP) of winter wheat under various deficit irrigation scenarios. A set of optimal irrigation schedules were proposed for different climate years, which significantly mitigated irrigation water usage while sustaining high yields and WPs. The results indicated that despite the irrigation water demand of winter wheat under the future climate scenario was slightly higher than that in the historical period, their crop water sensitive periods (reviving, jointing, and flowering) remained the same. Therefore, we recommended adopting the same deficit irrigation schedules for the historical and future periods. In wet years, adopting a 50% deficit irrigation strategy only reduced crop yields by less than 5% compared with full irrigation, but it saved 1000–1100 m3 of water per hectare and contributed a WP higher than 1.88 kg/m3. While in normal and dry years, an optimal 25% deficit irrigation could sustain over 96% of the maximum yield, meanwhile it could save 650–800 m3/ha of water and achieve almost the same WP as full irrigation. These climate-smart irrigation strategies adapting to diverse climatic conditions largely mitigate agricultural water consumption while maximizing crop productivity and water use efficiency, which are essential for achieving precision irrigation and sustainable water management under a changing climate.

Keywords: Climate change; Food security; Deficit irrigation; Water productivity; Winter wheat (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377423005280
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:292:y:2024:i:c:s0378377423005280

DOI: 10.1016/j.agwat.2023.108663

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:292:y:2024:i:c:s0378377423005280