EconPapers    
Economics at your fingertips  
 

Water uptake by plants under nonuniform soil moisture conditions: A comprehensive numerical and experimental analysis

Anooja Thomas, Brijesh Kumar Yadav and Jiří Šimůnek

Agricultural Water Management, 2024, vol. 292, issue C

Abstract: The spatiotemporal pattern of root water uptake (RWU) depends on multiple factors, such as plant root biomass, soil water availability, and prevailing weather conditions at the site. The water uptake reduction due to the nonuniformity in soil water contents is often mitigated through compensated root water uptake (CRWU) and hydraulic redistribution (HR). Although previous studies have often considered these two processes independently due to the simplicity and feasibility of analyzing them separately, CRWU and HR can coexist in field conditions. Therefore, this work demonstrates the importance of considering CRWU and HR simultaneously in estimating daily transpiration and RWU distribution for nonuniform soil moisture conditions. For that, we have implemented the mechanistic RWU models developed by de Jong van Lier et al. (denoted below as the DJ model), Couvreur (CR), and Nimah and Hanks (NH) (see the references in the main text) into the widely-used HYDRUS-1D model, in addition to the previously available Jarvis (JF) and Feddes (FD) models. The performance of these models was then compared for varying soil water contents and boundary conditions using experimental data and hypothetical modeling scenarios. Our analysis has shown that these models are beneficial in estimating RWU with varying degrees of accuracy. The DJ and CR models are effective in simultaneously simulating CRWU and HR. NH and JF models can simulate CRWU but cannot simulate HR satisfactorily. Implementing these models into the HYDRUS platform for simultaneously considering CRWU and HR will significantly improve the accuracy of RWU predictions.

Keywords: HYDRUS; Root water uptake; Mechanistic RWU models; Compensated root water uptake; Hydraulic redistribution (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424000039
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:292:y:2024:i:c:s0378377424000039

DOI: 10.1016/j.agwat.2024.108668

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:292:y:2024:i:c:s0378377424000039