EconPapers    
Economics at your fingertips  
 

Impacts of climate change on rice yields in the Nile River Delta of Egypt: A large-scale projection analysis based on CMIP6

Elsayed Ahmed Elsadek, Ke Zhang, Yousef Alhaj Hamoud, Ahmed Mousa, Ahmed Awad, Mohammed Abdallah, Hiba Shaghaleh, Amar Ali Adam Hamad, Muhammad Tahir Jamil and Ahmed Elbeltagi

Agricultural Water Management, 2024, vol. 292, issue C

Abstract: Climate change directly affects crop yields, which would cause more future food security crises. Ensemble global climate models (GCMs) combined with crop growth models are an effective method to project such impacts. In the current study, five criteria were used to pick out ten GCMs. Three types of efficiency criteria, namely root-mean-squared error (RMSE), Pearson’s correlation coefficient (R), Nash-Sutcliffe efficiency coefficient (NSE), and bias (BISA) between predicted and observed temperature and precipitation, were used to evaluate and select the better-performing of the GCMs for the baseline period (1981–2010). Then, AquaCrop-GIS, driven by the downscaled projected climate data from the selected GCMs, was used to predict rice yields in the Nile River Delta (NRD) region under two Shared Socioeconomic Pathways (SSP) scenarios (SSP2–4.5 and SSP5–8.5) and four prediction periods (2021–2099). Four statistical indicators, namely, prediction error (Pe), normalized RMSE (RMSEn), index of agreement (Dindex), and coefficient of determination (R2), were used to evaluate the performance of AquaCrop-GIS. Our results showed that five GCMs, including the BCC-CSM2-MR, CMCC-ESM2, INM-CM5–0, MRI-ESM2–0, and UKESM1–0-LL, had better performances in simulating temperature and precipitation (0.81 ≤ RMSE ≤ 4.77, 0.30 ≤ NSE ≤ 0.97, and 0.57 ≤ R ≤ 0.99). In addition, AquaCrop-GIS showed excellent accuracy in simulating rice yields and predicted that, without CO2 effects, rice yields would increase by 2.19% and 4.23% under SSP2–4.5 and by 0.72% and 0.30% under SSP5–8.5 during the 2030s and 2050s, respectively. However, in the 2070s and 2090s, rice yields would decline by 7.20% and 9.0% under SSP2–4.5 and by 23.34% and 34.24% under SSP5–8.5 during the 2070s and 2090s, respectively. With CO2 effects, rice yields would rise by 14.49%, 24.97%, 15.96%, and 16.93% under SSP2–4.5 and by 14.33%, 26.22%, 8.06%, and 1.61% under SSP5–8.5 during the 2030s, 2050s, 2070s, and 2090s, respectively. Regardless of uncertainties and limitations, our findings are beneficial for farmers and policymakers to develop appropriate management strategies to improve rice yields in Egypt.

Keywords: AquaCrop-GIS; Climate change; CMIP6; Downscaling; Nile River Delta; Rice (Oryza sativa L.) (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424000088
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:292:y:2024:i:c:s0378377424000088

DOI: 10.1016/j.agwat.2024.108673

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:292:y:2024:i:c:s0378377424000088