EconPapers    
Economics at your fingertips  
 

Biogas slurry change the transport and distribution of soil water under drip irrigation

Haitao Wang, Xuefeng Qiu, Xiaoyang Liang, Hang Wang and Jiandong Wang

Agricultural Water Management, 2024, vol. 294, issue C

Abstract: Biogas slurry (BS), waste water of energy production, holds potential as both an irrigation water resource and a liquid fertilizer source. Typically combined with water and mineral fertilizer at specific ratios, BS is applied in fields with drip irrigation systems to enhance crop growth. However, the soil water infiltration process with BS drip irrigation remains poorly understood, mainly owing to the BS's differing characteristics from conventional water sources. This study investigated the morphological characteristics, transport and distribution of water in three ratios of BS-water using a soil column experiment, with the post-irrigation surface soil pores and elements analyzed using electron microscopy and energy spectrum scanning techniques. The findings reveal that BS drip irrigation significantly alters the water morphological characteristics, transport process and distribution compared to conventional water sources. The morphology of the wetting-front changed from nearly "hemispherical" to a "half-pear" shape with time in BS drip irrigation. The soil-wetting front's vertical distance was notably smaller, approximately 50% of the vertical depth seen with traditional water source drip irrigation, even after redistribution of soil moisture, it was still difficult to reach the depth of the main root zone of most crops. Moreover, The carbon content on the soil surface was increased, ranging between 19.05–47.62% in the BS irrigation scenario, which led to soil pore blockage and a decrease in porosity ranging between 11.99–40.5%. The dynamic viscosity of BS is approximately 50% higher than that of CF.Theses indicate that the combined effect of soil porosity and dynamic viscosity affects the BS infiltration.In conclusion, this paper proposes a BS drip irrigation model with integrated agronomic measures to mitigate the potential adverse effects of BS drip irrigation caused by changes in soil water transportation and distribution.

Keywords: Water and nitrogen; Transport and distribution; Infiltration; Wetting front; Morphological characteristics (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424000544
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:294:y:2024:i:c:s0378377424000544

DOI: 10.1016/j.agwat.2024.108719

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:294:y:2024:i:c:s0378377424000544