EconPapers    
Economics at your fingertips  
 

Maintaining grain number by reducing grain abortion is the key to improve water use efficiency of maize under deficit irrigation and salt stress

Jia Gao, Ninggang Liu, Xianqi Wang, Zuoyuan Niu, Qi Liao, Risheng Ding, Taisheng Du, Shaozhong Kang and Ling Tong

Agricultural Water Management, 2024, vol. 294, issue C

Abstract: Drought and soil salinization are threatening maize production in Northwest China, and climate change is exacerbating water shortages. The objective of this study is to explore the mechanisms underlying spring maize yield and water use efficiency under water deficit and salt stress, to coordinate water conservation and maize production. A three-year field trial was conducted with two water levels (full irrigation and deficit irrigation) and two salt levels (0.65‰ and 2‰) using two maize genotypes (ZD958 and XY335). Leaf area, leaf photosynthesis, dry matter accumulation, floret number, grain abortion, ear characteristics and water use efficiency were evaluated. Water, salt and their combined stress significantly decreased the grain yield by 7.3%, 20.5%, and 38.7%, respectively, 93.6% of which was explained by grain number depending on spikelet differentiation. Grain abortion was identified as the primary reason for maize yield reduction under water and salt stress. The reduction in total biomass, rather than biomass allocation suppressed spikelet differentiation under water and salt stress. Water or salt single stress improved water use efficiency (3.7%–17.5%) by reducing evaporation compared with no stress. Furthermore, water and salt combined stress significantly decreased maize productivity leading to reduction in water use efficiency. Taken together, reducing grain abortion to maintain grain number is the key to alleviate maize yield loss and improve water use efficiency under water and salt stress.

Keywords: Water deficit; Salt stress; Grain number; Grain yield; Water use efficiency (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424000623
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:294:y:2024:i:c:s0378377424000623

DOI: 10.1016/j.agwat.2024.108727

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:294:y:2024:i:c:s0378377424000623