SolarET: A generalizable machine learning approach to estimate reference evapotranspiration from solar radiation
Arman Ahmadi,
Mohammad Hossein Kazemi,
Andre Daccache and
Richard L. Snyder
Agricultural Water Management, 2024, vol. 295, issue C
Abstract:
Irrigation is the most significant consumer of freshwater worldwide. Deciding on the right amount of irrigation is crucial for sustainable water management and food production. The Penman-Monteith (P-M) reference crop evapotranspiration (ETO) is the gold standard in irrigation management and scheduling; however, its calculation requires measurements from multiple sensors over an extended reference grass surface. The cost of land, sensors, maintenance, and water to keep the grass surface green impedes having a dense network of ETO stations. To solve this challenge, this research aims to develop an input-limited ETO estimation approach based on historical weather data and machine learning (ML) algorithms to relax the need for a reference grass surface. This approach, called "SolarET," takes solar radiation (RS) data as its sole input. RS is the only meteorological driving factor of ETO that does not rely on the measuring surface. To test the generalizability of SolarET, we test its performance over unseen arbitrary locations across California. California is chosen as the case study since it is one of the world's most hydrologically altered and agriculturally productive regions. In total, 19,088,736 hourly data samples from 131 automated weather stations have been used in this study. The ML models have been trained over 114 stations and tested over 17 unseen stations, each representing a California climatic zone. Our findings point to the superiority of decision tree-based algorithms versus neural networks. SolarET works best in irrigation-oriented regions of California (e.g., Central Valley) and is less accurate in coastal and desert zones. Our results demonstrate the higher accuracy of SolarET using hourly (RMSE = 0.93 mm/day) and daily (RMSE = 0.97 mm/day) RS data in comparison to well-known empirical alternatives like Priestley-Taylor (PT) (RMSE = 1.35 mm/day) and Hargreaves-Samani (HS) (RMSE = 2.69 mm/day).
Keywords: Irrigation scheduling; Weather station; Reference grass surface; Pyranometer; CatBoost; California (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424001148
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:295:y:2024:i:c:s0378377424001148
DOI: 10.1016/j.agwat.2024.108779
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().