Rehydration under extreme drought conditions affected rhizosphere microorganisms more than bulk soil in broomcorn millet farmland
Lixin Tian,
Yu Yang,
Youhong Song and
Baili Feng
Agricultural Water Management, 2024, vol. 295, issue C
Abstract:
Rehydration is a primary adaptation strategy for alleviating the detrimental effects of drought on crop growth. However, the effects of rehydration on microbial communities in various compartments under drought conditions remain poorly understood. Herein, we explored the response patterns of bacterial and fungal community composition, diversity, ecological network, and assembly process in the bulk soil and rhizosphere of broomcorn millet farmland at 5, 10, 20, and 30 days after rehydration during drought conditions. Compared to drought, rehydration significantly decreased the organic matter (OM), total nitrogen (TN), available potassium (AK), available phosphorus (AP), nitrate nitrogen (NO3--N), and ammonium nitrogen (NH4+-N) contents in rhizosphere, but had no obvious influences on the OM and TN contents in bulk soil on the four sampling days. In the rhizosphere of broomcorn millet field, Firmicutes and Actinobacteria were enriched in drought condition, but Proteobacteria and Bacteroidetes were enriched in rehydration regime. Compared to drought, the relative abundances of Eurotiomycetes, Dothideomycetes, Mortierellomycetes, and Leotiomycetes were enhanced, but Sordariomycetes was reduced on the 5th and 10th days after rehydration. Rehydration increased the bacterial and fungal observed ASVs and Shannon index in the rhizosphere to varying degrees, but had little effect on the bulk soil. Null-model analysis indicated that rehydration deceased the stochastic process of fungal communities in the bulk soil, whereas had no influence on deterministic process of bacterial community in the bulk soil and rhizosphere. More importantly, rhizosphere properties had a greater impact on the bacterial and fungal community composition, diversity, and assembly process than bulk soil. Network analysis revealed that rehydration improved the interconnected taxa in the rhizosphere bacterial network, but reduced microbial interactions in the rhizosphere fungal network compared to drought. This work provides a theoretical foundation for elucidating the role of rehydration regime in governing the ecological services of microbiome of broomcorn millet farmland under drought conditions.
Keywords: Broomcorn millet; Water regimes; Rhizosphere-associated microbiome; Network analysis; Assembly process (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424001161
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:295:y:2024:i:c:s0378377424001161
DOI: 10.1016/j.agwat.2024.108781
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().