Water footprint in rainfed summer and winter crops: The role of soil moisture
Paula Olivera Rodríguez,
Mauro Ezequiel Holzman,
Maite M. Aldaya and
Raúl Eduardo Rivas
Agricultural Water Management, 2024, vol. 296, issue C
Abstract:
Argentina is one of the main producers and exporters of grains and oilseeds, ranking third in soybean exports and fourth in barley ones. The 90% of this production occurs within the Argentine Pampas region (APR) under rainfed conditions, but its water consumption and pollution has not been studied in depth. Likewise, the link between soil moisture (SM) and Water Footprint (WF) generation is poorly studied at the global level. And yet, SM is a critical factor for the development of rainfed crops. This study aims to evaluate, at plot scale, the role of SM in the generation of the green (WFgreen) and grey (WFgrey) (WF). Additionally, it estimates the WF for rainfed barley and soybean crops in the Southeast of APR, where there are no reference values. Yields, water consumption and nitrogen (N) pollution load were estimated for different campaigns. Field data (weather, crop and production management) recorded in the study plots were used. Results indicated an average WFgreen of 1236 m3/t for soybeans and a WFgreen of 349 m3/t and WFgrey of 547 m3/t for barley. The study highlights the critical role of SM in both WF sub-indicators. Soil water availability, based on the evaporative fraction during critical growth stages, influenced yields and final WFgreen volumes. In addition, there was an effect on N uptake by crops. In the driest barley campaign, WFgrey increased by 234%. Insufficient SM restricted nutrient uptake, reducing yields and increasing N with the potential to leach or runoff. Consequently, it is suggested to adjust the WFgrey methodology incorporating SM fluctuations and unaccounted N losses. The study contributes to understand the WF drivers and highlights the need to assess them accurately. In particular, it aims to reduce the gaps surrounding the water consumption of rainfed crops, thereby supporting resource conservation and grain provisioning efforts.
Keywords: Green water footprint; Grey water footprint; Evaporative fraction; Leaching-runoff fraction; Nitrogen uptake (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424001227
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:296:y:2024:i:c:s0378377424001227
DOI: 10.1016/j.agwat.2024.108787
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().