EconPapers    
Economics at your fingertips  
 

Actual evapotranspiration and energy balance estimation from vineyards using micro-meteorological data and machine learning modeling

Sigfredo Fuentes, Samuel Ortega-Farías, Marcos Carrasco-Benavides, Eden Tongson and Claudia Gonzalez Viejo

Agricultural Water Management, 2024, vol. 297, issue C

Abstract: Actual evapotranspiration (ETa) can be commonly estimated using numerical models based on i) weather and plant-based parameters, ii) from remotely sensed data and energy balance algorithms, and lately, iii) through the development and implementation of machine learning (ML) modeling techniques. In this work, supervised ML models were developed from a vineyard located in Talca, Chile, (i) to estimate actual evapotranspiration (ETa) (Model 1; M1) using the micrometeorological approach [Eddy Covariance; EC; sensible (H), latent (LE), soil heat fluxes (G) and net radiation (Rn)] and data from an automatic meteorological station (AMS) in reference conditions as ground-truth (inputs); (ii) to estimate energy balance components (Model 2; M2) from AMS data (inputs) and EC energy balance data as targets; (iii) to estimate ETa from the EC’s measured ETa data as target and thermal time data (degree hours; DH) calculated from air temperature with a base of 5 °C increments from 5 – 45 °C as inputs (Model 3; M3) and iv) to estimate energy balance components (targets from EC) from the same inputs of Model 3 (Model 4; M4). Results showed that the developed ML models had high accuracy and performance with no signs of over or under-fitting with a high correlation (R) and slope (b) close to unity (M1; R=0.94; b=0.89; M2; R=0.97; b=0.93; M3; R=0.97; b=0.89–0.95; M4; R=0.98; b=0.97). Furthermore, models were directly deployed over another vineyard located 22 km West of the modeled vineyard at 60 m lower over the sea level with significant performances and R values (R = 0.64–0.87; b = 0.66–1.00 for M1 to M4, respectively). These models could be used for precision irrigation to increase water use efficiency and better control canopy vigor, balance fruit and vegetative components, and ultimately improve berry and wine quality traits.

Keywords: Artificial neural networks; Eddy covariance; Thermal time; Plant water demand; Plant water status; Energy balance (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424001690
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:297:y:2024:i:c:s0378377424001690

DOI: 10.1016/j.agwat.2024.108834

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:297:y:2024:i:c:s0378377424001690