EconPapers    
Economics at your fingertips  
 

Assessing crop yield and water balance in crop rotation irrigation systems: Exploring sensitivity to soil hydraulic characteristics and initial moisture conditions in the North China Plain

Xiangyu Fan and Niels Schütze

Agricultural Water Management, 2024, vol. 300, issue C

Abstract: Multiple cropping is an effective measure to enhance the intensity of land use. The North China Plain is one of China’s most important grain production areas, with 70 % of the arable land under double rotation of winter wheat and summer maize. The allocation of irrigation water between two crop seasons depends on soil water flow and crop water consumption. This is because the amount of moisture left in the soil at the end of one season affects how much moisture is in the soil at the beginning of the next season. As a result, the amount of crops produced and the amount of water needed for irrigation are influenced by the initial soil moisture conditions and the soil’s hydraulic properties. This study aims to analyze how various factors affect crop yield when faced with water scarcity. The factors considered include initial soil moisture condition, soil texture, and irrigation scheduling. The simulation results indicate that, in most cases, initial soil moisture conditions have a more significant impact on crop yield than soil hydraulic characteristics. The impact of irrigation can differ based on the irrigation method and availability of water. Hence, when distributing irrigation water over a year, it is crucial to consider the soil’s water transport between two crop cycles to achieve the ideal full and deficit irrigation in a crop rotation system. Additionally, a joint optimal irrigation plan can significantly reduce the adverse effects of unfavorable soil hydraulic characteristics. Moreover, the optimal irrigation strategy can enhance crop water productivity and food security simultaneously.

Keywords: Irrigation scheduling; Sensitivity analysis; Deficit irrigation; Crop rotation system (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424002324
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:300:y:2024:i:c:s0378377424002324

DOI: 10.1016/j.agwat.2024.108897

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:300:y:2024:i:c:s0378377424002324