Seasonal assessment of the grass reference evapotranspiration estimation from limited inputs using different calibrating time windows and lysimeter benchmarks
Pau Martí,
Ramón López-Urrea,
Luis A. Mancha,
Pablo González-Altozano and
Armand Román
Agricultural Water Management, 2024, vol. 300, issue C
Abstract:
Models relying on limited inputs are very valuable for estimating reference evapotranspiration, and subsequently irrigation doses, but their accuracy can be very dependent from calibration. This study assessed three versions of the Hargreaves-Samani (HS) and the FAO Penman-Monteith (PM) equations to estimate reference evapotranspiration (ETo), relying respectively on three input combinations. Further the six models were adjusted each using different time windows for calculating the calibrating constants, namely global, annual, monthly, fortnightly, and weekly constants, while all the models were calibrated and tested using calculated and lysimeter benchmarks. The models relying on mean air temperature and solar radiation tended to be more accurate than those relying on mean air temperature and relative humidity, while these tended to be more accurate than those relying on air temperature difference, but there might be intra annual exceptions according to the monthly indicators. The errors of the PM estimations were just slightly higher than those of the corresponding HS estimations. The accuracy improvement in the calibrated versions was higher the shorter the time window used for averaging the calibrating parameters. Thus, the application of monthly or, at least, seasonal calibrating constant might be recommended for a suitable correction of the bias. During the year, the estimations presented markedly lower errors and lower differences within models during the summer. The error decrease in the calibrated versions was more marked during the winter. The assessment relying on lysimeter benchmarks provided similar qualitative patterns than the assessment relying on calculated benchmarks, but the corresponding error ranges were higher. Finally, 6 examples were presented for visualizing the effect of the method used to estimate ETo on the corresponding resulting average annual crop water requirements. If irrigation scheduling is based on a soil water balance using crop evapotranspiration estimates, at least, a monthly bias assessment of the ETo estimates in combination with the crop cycle lengths and dates might contribute to infer if crop water requirement infra-estimation trends are identified during crop sensitive stages to water deficit.
Keywords: FAO 56 methodology; FAO 56 Penman-Monteith; Hargreaves-Samani; Meteorological variables; Large weighing lysimeter; Grass reference surface (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424002385
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:300:y:2024:i:c:s0378377424002385
DOI: 10.1016/j.agwat.2024.108903
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().