Quantifying the impacts of varying groundwater table depths on cotton evapotranspiration, yield, water use efficiency, and root zone salinity using lysimeters
Nazar Gul,
Munir Ahmed Mangrio,
Irfan Ahmed Shaikh,
Abdul Ghafoor Siyal and
Majid Taie Semiromi
Agricultural Water Management, 2024, vol. 301, issue C
Abstract:
Determining the evapotranspiration (ET) of cotton as a water-intensive crop is crucial for effective irrigation planning and water management, especially in regions like Sindh province, Pakistan, where shallow groundwater table depths (WTDs) are prevalent. Despite the importance of cotton, a major cash crop in Sindh, previous studies on ET were conducted decades ago and may no longer be reliable due to ongoing climate change and the introduction of new crop varieties. Thus, we quantified cotton ET across two cropping seasons and at various WTDs (0.45, 0.60, 0.75, 1.50, 2.25, and 2.75 m). The experimental study was based on the data procured from 12 mini lysimeters and 12 large lysimeters for two years (2018 and 2019) and at two soil series. The findings revealed that cotton ET ranged from 1332 to 1437, 1114–1202, 988–1075, 781–821, 690–733, and 637–683 mm at WTDs of 0.45, 0.60, 0.75, 1.50, 2.25, and 2.75 m, respectively. WTDs from 0.45 to 0.75 m fulfilled 94–96 % of cotton ET through groundwater (GW) contribution in Sultanpur soil (silt loam) and 93–97 % in Miani soil (silty clay loam). At 1.50–2.75 m WTDs, irrigation water requirements (excluding rainfall and leaching) were 63–88 % in Sultanpur soil and 67–89 % in Miani soil. The highest yield was observed at a 1.50 m WTD, while the highest water use efficiency was identified at a 2.25 m WTD. However, soil salinity increased by 60–80 %, resulting in a 40–60 % lower cotton yield at 0.45–0.75 m WTD. Therefore, periodic flushing of salts is necessary to utilize shallow WTDs effectively. Considering GW contribution to ET when allocating water for irrigation channels and devising irrigation schedules is crucial. This approach can lead to water savings, prevent land from becoming waterlogged and saline, manage the groundwater table, and reduce the need for drainage channels and labor force for their preparation.
Keywords: Cotton evapotranspiration; Groundwater contribution; Root zone salinity; Water use efficiency; Water table depth; Lysimeter (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424002683
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:301:y:2024:i:c:s0378377424002683
DOI: 10.1016/j.agwat.2024.108933
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().