EconPapers    
Economics at your fingertips  
 

Evapotranspiration, water use efficiency, and yield for film mulched maize under different nitrogen-fertilization rates and climate conditions

Heng Fang, Yuannong Li, Xiaobo Gu, Yadan Du, Pengpeng Chen and Hongxiang Hu

Agricultural Water Management, 2024, vol. 301, issue C

Abstract: The biodegradable film, as an ideal substitute for plastic film, has broad application prospects. However, it is uncertain in maize actual evapotranspiration (ETac) components, yield, and water use efficiency (WUE) of biodegradable and plastic films during the different rainfall seasons. Therefore, a 4-year field trial with three mulching patterns (FNM: flat planting with non-mulching, RPM: ridge-furrow with plastic film mulching, and RBM: ridge-furrow with biodegradable film mulching) and two N-fertilization levels (0 and 180 kg N ha–1) was conducted. The results showed that the machine-learning models could accurately estimate maize ETac and its partitioning, and the random forest and artificial neural networks models had the highest accuracy and the least input variables after optimization. Compared to FNM, RBM and RPM increased Et by 10.8 mm, 14.0 mm in the dry season, 9.1 mm, 11.2 mm in the normal season, and 4.0 mm, 7.5 mm in the wet season, respectively, but decreased Es by 75.8 mm, 82.7 mm in the dry season, 48.6 mm, 56.7 mm in the normal season, 67.1 mm, and 74.9 mm in the wet season, respectively. Therefore, RBM and RPM decreased ETac by 65.0 mm, 68.8 mm in the dry season, 39.5 mm, 45.6 mm in the normal season, and 53.1 mm, 67.5 mm in the wet season, respectively, compared to FNM. Nitrogen application had a similar effect on Es and Et but only increased ETac by 13.3 mm in the dry season, 2 mm in the normal season, and 4.3 mm in the wet season, respectively, compared to N0. Furthermore, RBM and RPM under different nitrogen-fertilizations increased maize yield by 4.0 %, 3.6 % in the dry season, 3.0 %, 3.3 % in the normal season, and 5.3 %, 5.9 % in the wet season, respectively, also increased maize WUE by 23.3 %, 24.1 % in the dry season, 12.9 %, 15.0 % in the normal season, and 21.1 %, 23.4 % in the wet season, respectively, compared to FNM. This study proved that RPM could be replaced by RBM under 180 kg N ha–1 in the different rainfall seasons in terms of reducing ETac, increasing maize yield, and improving WUE. The optimized machine learning models in this study also provided a low-cost method for computing regional maize ETac.

Keywords: Plant transpiration; Soil evaporation; Machine learning; Biodegradable film; Ridge-furrow with film mulching (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424002701
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:301:y:2024:i:c:s0378377424002701

DOI: 10.1016/j.agwat.2024.108935

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:301:y:2024:i:c:s0378377424002701