Wastewater as a nutrient source for hydroponic production of lettuce: Summer and winter growth
Ounísia Santos,
Daniela Vaz,
Fernando Sebastião,
Helena Sousa and
Judite Vieira
Agricultural Water Management, 2024, vol. 301, issue C
Abstract:
Solutions combining soilless cropping systems with wastewater reuse can offer benefits in the agriculture sector, reducing pressure on water resources, promoting sustainable production, and reclaiming wastewater. However, assessing the sanitary risks associated with wastewater reuse is of utmost importance. This study aimed to investigate the hydroponic growth of lettuce (Lactuca sativa var. crispa L.) in wastewater from an urban treatment plant with different levels of treatment and evaluate potential sanitary risks. Crop growth took place in a greenhouse, during summer and winter periods, using wastewater after primary (PTW) or secondary (STW) treatment, and a nutrient solution (NS), as control. Physical and chemical water quality parameters, morphological crop growth parameters, and environmental conditions inside the greenhouse were monitored. Toxicity analyses were carried out through cell viability assays with the Caco-2 cell line and total coliforms and Escherichia coli (E. coli) were determined. Wastewater-grown plants achieved acceptable growth, even though presenting lower fresh weight than NS-plants. STW-plants’ growth was limited essentially by nutrient deficiency, and PTW-plants were affected by nutrient deficiency, pH values, solid load, and N-NO2 concentration. Higher temperatures in summer led to faster crop growth, and lower temperatures in winter allowed better nutrient uptake by the crop. Wastewater-grown plants did not evidence toxicity in leaf extracts up to 1 % w/v. Coliform enumeration data indicated an accumulation in plant roots, with high removal from the wastewater. E. coli was not detected on plants’ leaves and total coliforms were within acceptable limits. Furthermore, the results point to an improvement in the wastewater quality, with minimum removal values of 75.2 % BOD5, 83.1 % COD, 43.4 % P, 44.9 % N, and 90.4 % K. The results demonstrated the viability of wastewater reuse for hydroponic production allowing a better understanding of its processes and contributing to mitigating water scarcity for food production, and the impacts of treated wastewater discharge in freshwater courses, particularly those associated with nutrient delivery to aquatic systems.
Keywords: Hydroponics; Wastewater reuse; Lettuce (var. crispa L.); Water quality; Plant growth (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424003019
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:301:y:2024:i:c:s0378377424003019
DOI: 10.1016/j.agwat.2024.108966
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().