Predicting predawn leaf water potential while accounting for uncertainty using vine shoot growth and weather data in Mediterranean rainfed vineyards
Yulin Zhang,
Léo Pichon,
Anne Pellegrino,
Sébastien Roux,
Cécile Péruzzaro and
Bruno Tisseyre
Agricultural Water Management, 2024, vol. 302, issue C
Abstract:
Monitoring vine water status is crucial for wine production. However, in Mediterranean regions, a key indicator for evaluating this information, predawn leaf water potential (Ψpd), is challenging to obtain in terms of logistics and costs. To address this, the iG-Apex, a plant growth index based on vine shoot growth observations has been proposed as being both low-cost and easy to collect. It has been found that a strong correlation exists between iG-Apex and Ψpd. Nonetheless, the relationship between iG-Apex and Ψpd becomes increasingly uncertain as the growing season progresses. Therefore, while being operationally attempting, modeling Ψpd from iG-Apex necessitates the consideration of prediction uncertainty. This study presents a modeling approach, named the Recursive-Duo-Model (RDM), which integrates predictive modeling and Bayesian resampling to estimate Ψpd with iG-Apex while reducing prediction uncertainty. Using iG-Apex and readily accessible weather data, the RDM aims to reduce the cost to obtain the key indicator for monitoring vine water status. The study evaluated the RDM's performance across four water deficit scenarios: no deficit (-0.3 ≤ observed Ψpd < 0 MPa), mild to moderate deficit (-0.5 ≤ observed Ψpd < −0.3 MPa), moderate to severe deficit (-0.8 ≤ observed Ψpd < −0.5 MPa), and high deficit (observed Ψpd ≤ −0.8 MPa). Results showed satisfactory prediction accuracy (R²=0.61, RMSE=0.14 MPa), with the method effectively detecting the first three water deficit scenarios. In parallel, the RDM reduced prediction uncertainty (mean width of 80 % confidence interval=0.20 MPa) compared to a conventional approach based solely on vine shoot growth data (mean width=0.36 MPa).
Keywords: Vine water status; iG-Apex; Predictive model; Resampling; Auto-correlation variable (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424003330
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:302:y:2024:i:c:s0378377424003330
DOI: 10.1016/j.agwat.2024.108998
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).