EconPapers    
Economics at your fingertips  
 

Enhanced irrigation volume reduces salinity and improves deep root zone soil nutrients, phosphatase activity and changes root traits of fruit trees

Yanjie Li, Zhijie Li, Ping Gong, Xinlin He, Hongguang Liu, Ling Li, Chunxia Wang, Pengfei Li, Jie Wei and Xuyong Yu

Agricultural Water Management, 2024, vol. 302, issue C

Abstract: Saline soils pose complex environmental challenges that limit fruit tree root function. Understanding the mechanisms by which environmental factors drive root traits in the root zone soil is crucial for improving fruit tree productivity through irrigation-based regulation of root structure. This study aimed to identify the primary drivers and driving mechanisms of soil environment on root traits, as influenced by root zone soil water content in saline fruit trees. A 2-year field experiment was conducted in Korla, Xinjiang, to investigate the effects of root zone soil physicochemical properties, enzyme activities, nutrients and active state trace elements on root traits by setting different irrigation gradients (Low: 3750 m3 ha−1; Moderate: 5250 m3 ha−1; High: 6750 m3 ha−1). Compared to low-irrigation treatment, the results showed that high-irrigation treatment decreased soil electrical conductivity and pH by 21.6–30.5 % and 1.4–5.5 %, respectively, and increased soil organic matter, available phosphorus, and available potassium by 4.4–5.1 %, 11.7–17.6 %, and 14.8–34.6 %, respectively. Additionally, catalase, urease, and phosphatase activities increased by 30.0–33.1 %, 21.6–22.0 %, and 30.0–30.2 %, respectively, enhancing irrigation amount promote nutrient migration to deeper soil layers and providing a stable and suitable environment for the main root zone. Concurrently, a total dataset (TDS) was established using four categories of 15 indicators, including physicochemical properties, nutrients, active trace elements, and enzyme activities of the 0–80 cm root zone soil. The machine learning models were used to screen the root zone soil driving factors and reveal the mechanism of environmental factors on root traits. The Random Forest model identified phosphatase, effective phosphorus, and temperature as the main drivers of root traits, with an increase in MSE (%) range of phosphatase (10.3–15.6 %), AP (6.8–10.9 %), and temperature (8.3–16.9 %). Additionally, water-mediated soil nutrients and soil enzyme activities had a positive effect on root traits. Therefore, this study provides a theoretical basis for irrigation regulation programs in the root zone soil environment of saline fruit trees.

Keywords: Root zone environment; Root trait drivers; Random forest model; Root trait driving mechanism (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424003366
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:302:y:2024:i:c:s0378377424003366

DOI: 10.1016/j.agwat.2024.109001

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:302:y:2024:i:c:s0378377424003366