EconPapers    
Economics at your fingertips  
 

Rice yield and water productivity in response to water-saving irrigation practices in China: A meta-analysis

Qian Yu, Yulong Dai, Jun Wei, Jiaer Wang, Bin Liao and Yuanlai Cui

Agricultural Water Management, 2024, vol. 302, issue C

Abstract: Various water-saving irrigation (WSI) practices (e.g., dry cultivation, intermittent irrigation, controlled irrigation, shallow-wet irrigation, and rain-gathering irrigation) have been applied to rice cultivation mitigate water scarcity in China. However, in previous studies, these WSI practices have shown different water savings and yield increases, mainly due to different application conditions. A meta-analysis was applied to investigate the responses of the actual evapotranspiration (ETact), irrigation water (IW), rice yield (Y), and water productivity (WP) to WSI practices in different conditions, and 956 data sets were selected from 108 published papers. The results showed that, compared to traditional flood irrigation, rain-gathering irrigation decreased ETact and IW by 25.41 % and 55.7 % respectively, and increased WP greatly by 14.26 % while having a slight decrease in Y. Except for dry cultivation, all WSI practices increased WP by 4.72–14.26 % compared to traditional flood irrigation. The effects of different soil qualities on rice water consumption and production vary; medium soils with high organic content and a pH below 6.5 are better for rice growth. As for rice seasons, WSI practices had the least impact on ETact in middle rice, with an average reduction of 5.84 %, followed by early rice (–12.66 %) and late rice (–18.81 %). Higher mean annual temperature and more precipitation led to more Y under WSI practices. Differences in the effects of mean annual temperature and mean annual precipitation on WP were not significant. Our meta-analysis provides more insight into the effects of water-saving irrigation practices on rice water consumption, yield, and water productivity at various experimental sites. In general, there is considerable variation in the responses of Y and WP to different water-saving irrigation practices, and more evaluation of aspects such as rice seasons, soil properties, and meteorological conditions is needed for optimizing WSI in practice.

Keywords: Water-saving irrigation; Meta-analysis; Rice yield; Water productivity (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037837742400341X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:302:y:2024:i:c:s037837742400341x

DOI: 10.1016/j.agwat.2024.109006

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:302:y:2024:i:c:s037837742400341x