EconPapers    
Economics at your fingertips  
 

Comparative assessment of soil health attributes between topsoil and subsoil influenced by long-term wastewater irrigation

Salar Rezapour, Farrokh Asadzadeh and Mohammad Heidari

Agricultural Water Management, 2024, vol. 302, issue C

Abstract: The reuse of wastewater (WW) for crop irrigation is increasingly recognized as an alternative to freshwater irrigation in arid and semi-arid regions. However, there is a significant gap in knowledge regarding the soil health index (SHI) and factors influencing topsoil and subsoil in cropland under long-term WW irrigation. This study aimed to comparatively assess soil health attributes between topsoil and subsoil in smallholder farmlands that have been irrigated with WW for over 50 years. This assessment utilized a combination of soil physico-chemical and fertility attributes, along with heavy metal concentrations. The soil health index (SHI) was developed using linear (SHI - L) and nonlinear (SHI - NL) models, based on the Total Data Set (TDS) and Minimum Data Set (MDS). Statistically significant differences (P ≤ 0.05) were observed between topsoil and subsoil for the soil stability index (SSI), organic matter (SOM), calcium carbonate equivalent (CCE), electrical conductivity (EC), sodium adsorption ratio (SAR), macro- and micronutrients, and heavy metals (Zn, Cu, Cd, Pb, and Ni). In contrast, soil bulk density (BD), pH, and cation exchange capacity (CEC) did not show significant differences. The mean SHI - L and SHI - NL values ranged from 0.68 to 0.77 and 0.46–0.53 for topsoil, and from 0.66 to 0.74 and 0.45–0.51 for subsoil, respectively. The SHI values were higher in the topsoil, with increases ranging from 2.3 % to 7.1 % for SHI - L and 0.65–11.3 % for SHI - NL compared to the subsoil. The regression coefficients between SHIs and corn yield were higher in the topsoil (0.46–0.49) than in the subsoil (0.20–0.22). Furthermore, the SHI - NL model demonstrated greater precision than the SHI - L model in predicting corn yield in both soil depths. These findings highlight the effectiveness of SHI assessments, particularly the SHI - NL model, in analyzing changes in soil health indices with depth and their relationship with crop performance in long-term WW-irrigated smallholder farmlands. This research provides valuable insights into addressing soil health challenges in similar agricultural systems.

Keywords: Soil health index; Soil health indicator; Smallholders’ farm; Wastewater irrigation; Crop productivity (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424003470
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:302:y:2024:i:c:s0378377424003470

DOI: 10.1016/j.agwat.2024.109012

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:302:y:2024:i:c:s0378377424003470