EconPapers    
Economics at your fingertips  
 

Combining magnetized water with biodegradable film mulching reshapes soil water-salt distribution and affects processing tomatoes' yield in the arid drip-irrigated field of Northwest China

Zhenpeng Zhou, Jian Liu, Jinzhu Zhang, Wenhao Li, Yue Wen, Rui Chen, Pengpeng Chen, Haiqiang Li, Xuehui Gao, Yan Zhu and Zhenhua Wang

Agricultural Water Management, 2024, vol. 303, issue C

Abstract: In arid areas, biodegradable film has recently had the potential to replace polyethylene (PE) film to address plastic pollution. However, the positive effect of biodegradable film on soil moisture and salt control is weaker than that of PE film. Magnetized irrigation water technology is expected to compensate for this limitation. This study comprised a field experiment in 20212023 to study how two types of biodegradable film (M1, black; M2, transparent) and six magnetization intensity on irrigation water (T0, 0 Gs; T1, 1000 Gs; T2, 2000 Gs; T3, 3000 Gs; T4, 4000 Gs; T5, 5000 Gs) affect the degradation rate of biodegradable film, soil watersalt distribution, growth, and quality of processing tomatoes. The traditional PE film mulching and non-magnetized irrigation were used as the control group (MPET0). The results demonstrated that magnetized water irrigation slowed down the degradation rate of biodegradable film. In addition, the magnetized irrigation water can redistributed the soil water-salt patterns under the biodegradable film, improving the soil water content and salt leaching efficiency, with better results in M1 than in M2. Moreover, magnetized water irrigation promoted the growth of tomato leaf area under the biodegradable film, enhancing photochemical efficiency and potential activity of PSII, thereby improving fruit yield, quality, and water use efficiency of tomato. Principal component analysis showed that the comprehensive score of M1T3 treatment was the highest throughout the three years. Furthermore, M1T3 treatment has the highest processing tomato economic benefits during 2021–2023 (24634986 CNY hm2 more than MPET0). Therefore, the use of 3000 Gs magnetized irrigation water combined with black biodegradable film is conducive to improving soil water and salt conditions, reducing residual film pollution, and improving the yield and quality of processing tomatoes, thus ensuring the sustainable development of oasis agriculture.

Keywords: Plastic residuals; Biodegradable film; Magnetized water; Soil water-salt distribution; Processing tomatoes plantation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424003561
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:303:y:2024:i:c:s0378377424003561

DOI: 10.1016/j.agwat.2024.109021

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:303:y:2024:i:c:s0378377424003561