EconPapers    
Economics at your fingertips  
 

Compound extreme heat and drought stress alter the spatial gradients of protein and starch in wheat grains

Jiangyi Shi, Zhifeng Ding, Xin Ge, Xiaolei Qiu, Junhao Xu, Liujun Xiao, Leilei Liu, Liang Tang, Weixing Cao, Yan Zhu and Bing Liu

Agricultural Water Management, 2024, vol. 303, issue C

Abstract: The spatial gradients of protein and starch in wheat grains affected the grain milling characteristics and flour utilization. The increase in compound heat stress and drought stress (HDS) due to global climate change threatens wheat grain yield and quality parameters, but the impacts of extreme climate events on the gradients of protein and starch in wheat grains remain unclear. In this study, two-year, environment-controlled experiments with four heat stress levels (17/27, 21/31, 25/35, and 29/39°C) and three drought stress levels (30 %, 55 %, and 75 % field capacity) were conducted to investigate the effects of HDS on the gradients of protein and starch concentrations within the five grain layers. The results showed that HDS resulted in significantly greater protein concentrations, while resulting in lower starch concentrations in the wheat grain layers. Among the five layers, the endosperm layers exhibited the greatest increase in protein concentration under HDS, but the starch concentration under HDS decreased in the order of husk > aleurone > endosperm layer. HDS unevenly altered the protein and starch concentrations of the five grain layers. There was significant linear relationship between relative protein and starch concentration with accumulated heat degree days (AHDD). With a 1°C·d increase in AHDD, the protein concentration in the five grain layers increased by 1.17–2.19 %, while the starch concentration decreased by 0.62–0.90 %, depending on the drought stress levels. A significant linear relationship was also observed between the relative protein and starch concentrations and evapotranspiration (ET). A 1 mm increase in ET led to a protein concentration decrease of 0.58–0.76 % in P1-P5, with a corresponding starch concentration increase of 0.28–0.46 %, depending on cultivar and treatment stages. Our results indicate that HDS significantly impacts the grain quality parameters for the flour milling process and human diet and will provide important insights into adapting wheat quality to climate change.

Keywords: Heat stress; Drought stress; Interactive effects; Spatial gradient; Protein concentration; Starch concentration (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424003846
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:303:y:2024:i:c:s0378377424003846

DOI: 10.1016/j.agwat.2024.109049

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:agiwat:v:303:y:2024:i:c:s0378377424003846