Plant-based and remote sensing for water status monitoring of orchard crops: Systematic review and meta-analysis
L.J. Velazquez-Chavez,
A. Daccache,
A.Z. Mohamed and
M. Centritto
Agricultural Water Management, 2024, vol. 303, issue C
Abstract:
Agricultural sustainability in many parts of the world is facing significant challenges due to water scarcity and the adverse effects of climate change. Agriculture uses 70 % of the total freshwater, and irrigation sustains 40 % of the global food supply. Various plant monitoring technologies and irrigation techniques were developed to improve the efficiency of agricultural water use. Although their benefits are widely acknowledged, conflicting findings and inconclusive results emerge when assessing their performances and effectiveness in monitoring plant water status. A systematic review using a rigorous protocol for research question formulation and eligibility criteria definition was conducted with the aim of assessing, from published literature, the performance of various plant (tree) based sensors for water stress monitoring. Initially, 496 articles were collected from four leading search engines for scientific peer-reviewed papers., the number of relevant manuscripts was narrowed to 124, using strict inclusion and exclusion criteria, from which meta-analysis was conducted and reported. Results showed that most studies were conducted in Spain and the USA, focusing on olive, peach, and almond cultivation. Crop Water Stress Index showed a better correlation with stomatal conductance (gs) (R2 = 0.76) and with leaf water potential (ΨL) (R2 = 0.75) compared to Xylem Water Potential (ΨS) (R2 = 0.6). Maximum Daily Shrinkage (MDS) showed a coefficient of determination with ΨS equivalent to 0.68. On the remote sensing side, the most commonly used indices are the Normalized Difference Vegetation Index (NDVI) (n=22), Photochemical Reflectance Index (PRI) (n=11), and canopy temperature (n =94) with better correlation with ΨS for PRI and thermal. However, the finding is not conclusive due to the complexity of plant water relations and the influence of other factors such as environmental conditions, canopy structure, nutrient deficiencies, and plant diseases.
Keywords: Irrigation; Water potential; Sensors; Pressure chamber; Water stress (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037837742400386X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:303:y:2024:i:c:s037837742400386x
DOI: 10.1016/j.agwat.2024.109051
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().