EconPapers    
Economics at your fingertips  
 

Crop water stress detection based on UAV remote sensing systems

Hao Dong, Jiahui Dong, Shikun Sun, Ting Bai, Dongmei Zhao, Yali Yin, Xin Shen, Yakun Wang, Zhitao Zhang and Yubao Wang

Agricultural Water Management, 2024, vol. 303, issue C

Abstract: Agricultural water accounts for more than 70 % of the total global water usage, and the scarcity of global freshwater resources will largely limit global agricultural production. Precision irrigation is the key to improving water efficiency and achieving sustainable agriculture. Accurate and rapid access to crop water information is an essential prerequisite for precise irrigation decisions. Traditional moisture detection methods based on soil moisture and crop physiological parameters are faced with the problems of variable field conditions, low efficiency and lack of spatial information, which can be extremely limited in practical applications. By contrast, unmanned aerial vehicle (UAV) remote sensing has the advantages of low cost, small size, flexible data acquisition time, and easy acquisition of high-resolution image data. Therefore, UAV remote sensing has become an easy and efficient method for crop water information monitoring. This study systematically introduces the principles, methods and applications of crop water stress analysis using the UAV technology. First, the mechanism of crop water stress analysed by UAV is elaborated, focusing on the relationship between canopy temperature, evapotranspiration, sun-induced chlorophyll fluorescence (SIF) and crop water stress. Next, various UAV imaging technologies for crop water stress monitoring are presented, including optical sensing systems, red, green and blue (RGB) images, multi-spectral sensing systems, and hyper-spectral sensing systems. Subsequently, the application of machine learning algorithms in the field of UAV monitoring of crop water information is outlined, demonstrating their potential for data processing and analysis. Finally, new directions and challenges in UAV-based crop water information acquisition and processing are synthesised and discussed, with special emphasis on the prospects of data assimilation algorithms and non-stomatal restriction in monitoring crop water information in the future. This study provides a comprehensive comparison and assessment of the mechanisms, technologies and challenges of UAV-based crop water information monitoring, providing insights and references for researchers in related fields.

Keywords: UAV; CWSI; RGB; Optical; Multi-spectral; Hyper-spectral (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424003949
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:303:y:2024:i:c:s0378377424003949

DOI: 10.1016/j.agwat.2024.109059

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:303:y:2024:i:c:s0378377424003949