EconPapers    
Economics at your fingertips  
 

A hybrid variable flux irrigation model for mitigating agroecological impacts of straw incorporation and furrow ridge system in rice-wheat rotations

Edwin O. Amisi, Yinian Li, Riyin He, Qishuo Ding, Gaoming Xu and Degaga Petros Areru

Agricultural Water Management, 2024, vol. 304, issue C

Abstract: Shifting from traditional puddled transplanted rice to mechanized drilled-seeding, combined with rotary straw mixing and furrow irrigation, has proven to be a crucial strategy for reducing methane emissions while optimizing resource utilization and productivity. However, this technique introduces other challenges, such as furrow runoff and soil erosion, which contribute to the degradation of ridge/bed soil quality, fertilizer loss, and transport of agroecological pollutants. Therefore, this study explores a hybrid variable flux irrigation (VFI) model as a decision support tool to mitigate these limitations by controlling soil anoxia and runoff in furrow-irrigated rice after straw incorporation. The approach integrates the Hydrus 2D/3D with optimal loop controllers to adjust pump operations based on specific soil moisture levels, variable flux, and furrow water flow depths. Experimental validation and a field case study were conducted in Babaiqiao, Nanjing City, China, where rotary straw mixing and furrow-ridge layouts were applied alongside dry rice seeding and soil hydraulic experiments. The performance indicators of the Hydrus 2D/3D variable flux demonstrated reliable simulation of lateral wetting rates and soil moisture content with R2 of 0.79 and 0.89, corresponding RMSE values of 7.90 % and 7.60 %, and MRE values of 1.85 m/day and 0.07 cm³/cm³, respectively. The VFI model proved effective, indicating that the optimal irrigation schedule consisted of three distinct supply regimes. During each cycle, the pump operated intermittently, running for approximately 2.66 hours. VFI led to a 33 % reduction in pumping energy costs while simultaneously mitigating soil anoxia and furrow runoff, thus a potential to reduce the environmental footprint of rice-wheat rotations. Although rice yields under drilled seeding were reduced by 9.56 % compared to flood irrigation due to heavy weed infestation, the VFI model provides valuable insights for promoting straw incorporation and implementing practical solutions that support optimal water utilization and sustainable productivity.

Keywords: Hydrus 2D/3D; Soil anoxia; Runoff control; Furrow irrigation; Optimal loop models (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424004037
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:304:y:2024:i:c:s0378377424004037

DOI: 10.1016/j.agwat.2024.109067

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:304:y:2024:i:c:s0378377424004037