Multiscale spatial variability in land and water productivity across the Gezira irrigation scheme, Sudan
Razan Elnour,
Abebe Chukalla,
Yasir A. Mohamed and
Andres Verzijl
Agricultural Water Management, 2024, vol. 304, issue C
Abstract:
Agricultural performance assessment spans various spatial scales, from single plots to entire irrigation systems. A multi-scale analysis is thus crucial for informed decision-making. The Gezira irrigation sScheme in Sudan is a longstanding large-scale irrigation system experiencing severe water management challenges, manifested by low land productivity, water productivity, and irrigation efficiency. Recognizing the interdependence of decision-making, this research focuses on variations in water and land productivity at different spatial scales within the Gezira irrigation scheme. As one of the world’s largest gravity-irrigated systems, covering 2.1 million feddan (1 feddan = 0.42 ha ∼ 1 acre), the scheme serves as an interesting case to study head-tail performance variations across four spatial scales: tertiary, secondary, and major units, and the whole scheme. This study is centered on the winter season wheat cultivation 2022–2023, and employs the FAO’s Water Productivity Open Access Portal (WaPOR v2.1) datasets, with 100 m resolution, for computing land and water productivity. Ground-observed yield data from nine tertiary units (nimras) in the Wadelbur irrigation division were used to validate WaPOR. The results showed a systematic underestimation of WaPOR derived land productivity by about 40 % compared to the ground dataset. The head-tail analysis of land and water productivity reveal contrasting results at different scales. At tertiary and secondary scales, no correlation exists between distance from offtake and productivity. At the major unit (irrigation division), a moderate correlation is observed: 0.7 for land productivity, and 0.6 for water productivity. At the scheme scale, the correlation factors are somewhat lower for land productivity (0.4) and the same for water productivity (0.6). At the largest scale, the productivity appears to increase from head to tail divisions, suggesting potential overirrigation and waterlogging in the head parts leading to reduced productivity. Another possibility is the presence of better agricultural practices in the tail areas compared to the head.
Keywords: Irrigation performance; WaPOR; Spatial variation; Multi-scale analysis; Resource utilization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424004189
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:304:y:2024:i:c:s0378377424004189
DOI: 10.1016/j.agwat.2024.109082
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().