Plastic mulching enhances maize yield and water productivity by improving root characteristics, green leaf area, and photosynthesis for different cultivars in dryland regions
Lihong Wu,
Hao Quan,
Lina Wu,
Xi Zhang,
Dianyuan Ding,
Hao Feng,
Kadambot H.M. Siddique,
De Li Liu and
Bin Wang
Agricultural Water Management, 2024, vol. 305, issue C
Abstract:
Uneven precipitation during the growing season and frequent seasonal droughts on the Loess Plateau in Northwest China adversely affect crop production and water use efficiency. While plastic mulching (PM) has been used to alleviate water stress, few studies have examined the traits maize cultivars need to adapt to the altered water environment under PM and achieve high yields. A two-year field experiment was conducted to assess the root characteristics and aboveground growth traits of three widely used high-yielding maize cultivars—Zhengdan 958 (ZD), Huanong 138 (HN), Heboshi 122 (HBS)—under no mulching (NM) and PM conditions. Among the three cultivars, HBS had the highest root system indices—root length density (RLD), root surface area density (RSD), and root biomass—in the topsoil (0–40 cm), followed by ZD and HN under both NM and PM conditions. Under NM, HBS_NM treatment exhibited strong water absorption, improving photosynthesis and yield, making it suitable for drought conditions. Under PM, topsoil moisture increased significantly, with root system indices increasing by 22.5–36.1 % for RLD, 30.2–36.1 % for RSD, and 25.2–36.5 % for root biomass across the cultivars compared to NM. While ZD_PM did not have the highest root system indices under PM, it exhibited higher green leaf area index (4.5–7.5 %), chlorophyll content (2.8–8.6 %), and photosynthetic rate (6.0–14.5 %), resulting in the highest aboveground biomass and yield among the treatments. These findings suggest ZD is better adapted to the enhanced soil moisture under PM. Future research should focus on breeding genotypes that thrive under PM conditions, emphasizing traits such as larger leaf areas and higher photosynthetic rates to boost crop productivity in rainfed areas.
Keywords: Plastic mulch; Maize cultivar; Maize yield; Loess Plateau; Root characteristics (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424004414
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:305:y:2024:i:c:s0378377424004414
DOI: 10.1016/j.agwat.2024.109105
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().