Comparison of transformer, LSTM and coupled algorithms for soil moisture prediction in shallow-groundwater-level areas with interpretability analysis
Yue Wang and
Yuanyuan Zha
Agricultural Water Management, 2024, vol. 305, issue C
Abstract:
Accurate quantification of soil moisture is essential for understanding water and energy exchanges between the atmosphere and the Earth’s surface, as well as for agricultural applications. Predicting soil moisture content is vital for efficient water management, irrigation scheduling, and drought monitoring. Traditional forecasting methods, such as numerical regression models, often struggle due to various influencing factors and poor observation data quality. In contrast, deep learning algorithms, particularly recurrent and convolutional neural networks, show promise in predicting nonlinear data like soil moisture. This study focuses on shallow groundwater regions, using groundwater levels and meteorological data as features while coupling the Transformer model with other neural network structures. We investigate the potential of attention-based neural networks for soil moisture time series prediction. Our findings demonstrate that the Transformer model achieves an average R2 of 0.523 across different time lags, outperforming the LSTM model with an R2 of 0.485. The introduction of LSTM enhances the Transformer’s stability in handling temporal changes. Additionally, we verified the importance of groundwater for soil moisture prediction. This study introduces new methods for soil moisture prediction and offers new insights and recommendations for the development of artificial intelligence technology for soil moisture prediction.
Keywords: Soil moisture; Time series prediction; Shallow groundwater level; Deep learning; Interpretability analysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424004566
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:305:y:2024:i:c:s0378377424004566
DOI: 10.1016/j.agwat.2024.109120
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().