EconPapers    
Economics at your fingertips  
 

Combining UAV remote sensing data to estimate daily-scale crop water stress index: Enhancing diagnostic temporal representativeness

Qi Liu, Zhongyi Qu, Xiaolong Hu, Yanying Bai, Wei Yang, Yixuan Yang, Jiang Bian, Dongliang Zhang and Liangsheng Shi

Agricultural Water Management, 2024, vol. 305, issue C

Abstract: Using thermal infrared remote sensing from unmanned aerial vehicles (UAVs) to obtain crop canopy temperature and calculate the crop water stress index (CWSI) is a promising method for monitoring field water conditions. However, such endeavors are often constrained to instantaneous scales due to the diurnal variability of thermal infrared data. To address this limitation, we developed a daily-scale CWSI suitable for UAV remote sensing, enhancing the temporal representativeness of crop water stress diagnostics. We focused on spring maize in the Hetao Irrigation District of Inner Mongolia and investigated four key growth stages. UAV thermal infrared was used to obtain multiple instantaneous statistical CWSI (CWSIs) values during the day. UAV multispectral data and the Penman–Monteith model were combined to obtain the actual evapotranspiration and daily-scale CWSI (CWSIt_day). A temporal upscaling model from instantaneous CSWI to daily-scale CWSI was established by comparing the relationships between the CWSIs and CWSIt_day at different times. Results show that compared to the fluctuations of the CWSIs values throughout the day, those of the CWSIt_day values were smaller, with values of 0.13, 0.09, 0.03, and 0.03 during the ninth leaf (V9), tasseling (VT), silking (R1), and milk (R3) stages, respectively. The CWSIt_day demonstrated a higher correlation with the measured stomatal conductance (gs) at different time periods, thereby being more stable and temporally representative. However, both indices may incorrectly interpret the decline in leaf physiological activity due to aging as water stress at the end of maize growth, leading to overestimated CWSI values. The temporal upscaling model, which was developed by combining CWSIs values observed at 12:00, 14:00, and 16:00 with the random forest regression algorithm, achieved coefficient of determination of 0.794 and root mean square error of 0.04. Hence, multiple instantaneous observations can be used effectively instead of daily-scale observations, providing key insights into the popularization and application of the CWSIt_day. Overall, this study presents a new method for obtaining continuous CWSI values with high temporal and spatial resolutions based on a UAV platform.

Keywords: UAV; Crop water stress index; Daily-scale temporal upscaling; Stomatal conductance (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424004669
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:305:y:2024:i:c:s0378377424004669

DOI: 10.1016/j.agwat.2024.109130

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:305:y:2024:i:c:s0378377424004669