Soil moisture retrieval over croplands using novel dual-polarization SAR vegetation index
Rui Zhang,
Xin Bao,
Ruikai Hong,
Xu He,
Gaofei Yin,
Jie Chen,
Xiaoying Ouyang,
Yongxun Wang and
Guoxiang Liu
Agricultural Water Management, 2024, vol. 306, issue C
Abstract:
Synthetic Aperture Radar (SAR) data, known for its high spatial resolution and all-weather observation capabilities, holds immense promise in soil moisture monitoring. The Water Cloud Model (WCM) is widely applied in soil moisture inversion using SAR data. However, the optical vegetation indices employed in traditional WCM cannot synchronize with SAR data, and the polarimetric scattering information contained in current SAR vegetation indices is incomplete, consequently compromising the accuracy of SAR-based soil moisture retrieval. Therefore, this study proposes a method for soil moisture retrieval over cropland using a novel dual-polarization SAR vegetation index. The method initially combines SAR data covariance elements with backscatter information to establish a polarization scattering contrast parameter (mcp). Then, based on mcp and incorporating the degree of polarization, a polarization scattering correlation contrast parameter (Rcp) is defined. Rcp integrates the distinctive features of scattering differences and polarization states. Building on Rcp, a novel dual-polarization SAR vegetation index (DRVIs) is introduced. Ultimately, DRVIs are utilized in the WCM to achieve surface soil moisture retrieval in cropland. This research conducts experiments in four crop cover areas of the Carman test site in Canada, namely soybean, wheat, canola, and corn. Under VV and VH polarizations, the overall correlation coefficients between measured in-situ data and SSM estimates reach 0.89 and 0.84, respectively. Compared to SSM estimates based on NDVI and LAI products, SSM estimates based on DRVIs exhibit a notable improvement in accuracy, with enhancements of approximately 7.2 % and 12.7 %, respectively. This novel DRVIs is poised to expand the utilization of SAR data in monitoring vegetation growth and soil moisture retrieval.
Keywords: SAR vegetation index; Soil moisture retrieval; Sentinel-1; Water cloud model (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424004955
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:306:y:2024:i:c:s0378377424004955
DOI: 10.1016/j.agwat.2024.109159
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().