EconPapers    
Economics at your fingertips  
 

Comparative analysis of machine learning models and explainable AI for agriculture drought prediction: A case study of the Ta-pieh mountains

Lichang Xu, Shaowei Ning, Xiaoyan Xu, Shenghan Wang, Le Chen, Rujian Long, Shengyi Zhang, Yuliang Zhou, Min Zhang and Bhesh Raj Thapa

Agricultural Water Management, 2024, vol. 306, issue C

Abstract: The rising frequency and severity of droughts due to global climate change have posed significant challenges to agriculture, particularly in the Ta-pieh Mountains of China, where the economy relies heavily on agriculture. Accurate drought prediction and understanding mechanisms are essential for reducing drought-related losses. This study proposes a framework that integrates machine learning with explainable artificial intelligence (XAI) to predict and analyze agricultural droughts in the Ta-pieh Mountains. The framework employs four machine learning models: Extreme Gradient Boosting (XGBoost), Random Forest (RF), Long Short-Term Memory (LSTM) networks, and Backpropagation Neural Networks (BPNN). The models were trained on data from 2000 to 2021, with 2022 serving as an independent case study to evaluate their prediction accuracy. Results indicate that XGBoost and RF models demonstrated high accuracy across all metrics, significantly outperforming the LSTM and BPNN models. Additionally, the framework integrates Shapley Additive Explanations (SHAP) with RF and XGBoost models to analyze the contributions of various driving factors in agricultural drought events. For example, in the autumn drought of 2019, meteorological features contributed 75.53 %, while soil, topographic, and socio-economic factors contributed 8.86 %, 8.59 %, and 7.03 %, respectively. The analysis examined interactions between key factors and spatial patterns, showing how their contributions varied with drought severity and location. This offers detailed insights into the roles of different factors in drought prediction. In conclusion, this framework has potential for near real-time drought dynamics through data updates and can be applied to similar regions, aiding local decision-makers in effective water resource management strategies.

Keywords: Machine learning; Explainable AI; Agricultural drought; Ta-pieh Mountains (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424005122
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:306:y:2024:i:c:s0378377424005122

DOI: 10.1016/j.agwat.2024.109176

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-25
Handle: RePEc:eee:agiwat:v:306:y:2024:i:c:s0378377424005122