EconPapers    
Economics at your fingertips  
 

Economic irrigation water productivity of wheat and potato: An earth observation perspective on policy implications in the Litani Basin, Lebanon

Hadi Jaafar, Poolad Karimi and Edoardo Borgomeo

Agricultural Water Management, 2024, vol. 306, issue C

Abstract: Efficient water management is critical in addressing the challenges posed by water scarcity and resource sustainability in agriculture. However, the utilization of remote sensing technology to monitor and enhance water productivity in data-scarce environments remains an open question. This study underscores the importance of integrating earth observation systems into agricultural water management policies, elucidating their potential to shape crucial policy decisions and investment strategies, particularly in regions facing data limitations. To address this issue, we provide a comprehensive framework that blends remote sensing data with field-based economic information, to develop the concept of economic productivity of irrigation water. Leveraging FAO’s Water Productivity Open-access portal (WaPOR) data, we spatially assess yields, water use, crop water productivity, economic water productivity, and economic irrigation water productivity (EIWP) for wheat and potatoes in the Upper Litani Basin of Lebanon's Bekaa Valley. Early season potatoes outperform irrigated wheat significantly, providing up to ten times higher returns on irrigation water ($6/m3 vs. $0.6/m3). Spatial analysis shows that southern areas have 30 % lower potato EIWP than northern areas of the valley but 55 % higher wheat EIWP, mainly due to higher rainfall. Our findings reveal that merely considering crop water productivity is insufficient when deciding what to plant, as it fails to account for profitability. While transitioning to crops or practices with greater EIWP can enhance economic productivity on the short-term, it may simultaneously lead to increased water consumption. As a result, the shift towards highly water-productive systems may require measures such as controlling irrigated areas or implementing restrictions on water withdrawals to maintain stable water consumption levels. This study offers valuable insights for water resource management, agricultural policy, and sustainable water utilization, especially in semi-arid regions like the Litani Basin, providing a foundation for informed decision-making in these resource-constrained environments.

Keywords: Remote sensing; Evapotranspiration; Bekaa; Cereals; Crop yields; Wapor (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037837742400516X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:306:y:2024:i:c:s037837742400516x

DOI: 10.1016/j.agwat.2024.109180

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-25
Handle: RePEc:eee:agiwat:v:306:y:2024:i:c:s037837742400516x