Depth-specific soil moisture estimation in vegetated corn fields using a canopy-informed model: A fusion of RGB-thermal drone data and machine learning
Milad Vahidi,
Sanaz Shafian and
William Hunter Frame
Agricultural Water Management, 2025, vol. 307, issue C
Abstract:
Accurate soil moisture estimation is fundamental for optimizing irrigation strategies, enhancing crop yields, and managing water resources efficiently. This study harnesses time-series RGB-thermal imagery to assess soil moisture throughout various growth stages of corn, emphasizing depth-specific soil moisture estimation and time-series analysis of canopy information such as canopy structure and canopy spectral across growth stages. By integrating a comprehensive dataset that covers the full spectrum of the growing season from early to late stages. we evaluated soil moisture at multiple depths including 10, 20, 30, and 40 cm. Sophisticated regression models such as Gradient Boosting Machines (GBM), Least Absolute Shrinkage and Selection Operator (Lasso), and Support Vector Machines (SVM) were employed to analyze the effects of spectral indices, land surface temperature (LST), and structural canopy variables on soil moisture estimation accuracy. Our results reveal that thermal variables, particularly LST, exhibit significant correlations with soil moisture at shallower depths, especially in non-irrigated plots where moisture variability tends to be greater. The GBM model performed exceptionally well, achieving a coefficient of determination (R²) of 0.79 and a root mean square error (RMSE) of 1.86 % at a depth of 10 cm, showcasing its precision in moisture prediction. At a depth of 30 cm, the GBM model still demonstrated robust performance with an R² of 0.69 and an RMSE of 3.38 %, adapting effectively to different canopy densities and soil conditions. As canopy density increased, the effectiveness of LST in predicting soil moisture decreased, underscoring the dynamic interaction between plant growth stages and moisture estimation accuracy.
Keywords: Soil moisture; Canopy structure variables; Learning tools; Vegetation health; Temporal analysis (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424005493
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424005493
DOI: 10.1016/j.agwat.2024.109213
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().