EconPapers    
Economics at your fingertips  
 

Deficit irrigation enhances yield and water productivity of apples by inhibiting excessive vegetative growth and improving photosynthetic performance

Shenglin Wen, Ningbo Cui, Yaosheng Wang, Daozhi Gong, Liwen Xing, Zongjun Wu, Yixuan Zhang and Zhihui Wang

Agricultural Water Management, 2025, vol. 307, issue C

Abstract: Excessive irrigation in orchards can lead to wastage of water resources and instability or reduction in fruit yield. Therefore, this study aims to comprehensively explore the relationships among growth indicators, photosynthetic parameters, apple yield, and water productivity (WP) based on structural equation modeling (SEMD), and develop the appropriate irrigation management strategy for sustainable apple production. A two-year apple irrigation management experiment was carried out with 17 deficit drip irrigation (DDI) treatments, including a control treatment (CK, 100 % ETc) and 4 water deficit degree (W15 %, 85 % ETc; W30 %,70 % ETc; W45 %, 55 % ETc; W60 %, 40 % ETc) during four growth stages: bud burst to leafing stage (I), flowering to fruit set stage (II), fruit expansion stage (III), and fruit maturation stage (IV). Results indicated that transpiration rate (Tr) was more sensitive to water deficit than net photosynthesis rate (Pn), leading to greater instantaneous water use efficiency (WUEi). Compared to the CK, the W15 % DDI treatments at different growth stages slightly reduced Pn and significantly decreased Tr, thereby enhancing WUEi by 14.5 %-14.9 %. W15 % DDI treatments during the early growth stage restrained excessive growth while enhancing fruit development. SEMD analysis revealed that LAI had a significant positive effect on ET with a standardized path coefficient of 0.312 (P < 0.05) in 2021 and 0.498 (P < 0.001) in 2022, and fruit volume had a significant positive effect on ET with a standardized path coefficient of 1.03 (P < 0.001) in 2021 and 1.313 (P < 0.001) in 2022. The stomatal conductance (gs) was identified as the key factor influencing apple yield and WP using SEMD. The gs had an extremely significant positive effect on apple yield, with a standardized path coefficient of 0.356 in 2022 (P < 0.001). The indirect negative effect of leaf area index (LAI) on WP was mainly through its positive effect on water consumption (ET) and ET's subsequent negative effect on WP. Severe water deficits (W60 %) at stage III are inadvisable, as they may lead to apple yield losses exceeding 20 %. The I-W15 %, II-W15 %, II-W30 %, and IV-W15 % treatments synergistically improve both apple yield and WP, suggesting that these DDI treatments could be recommended for growers aiming to achieve sustainable apple production.

Keywords: Drip irrigation; Growth indicators; Leaf area index; Photosynthetic parameters; Structural equation modeling (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377424005560
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424005560

DOI: 10.1016/j.agwat.2024.109220

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:agiwat:v:307:y:2025:i:c:s0378377424005560