EconPapers    
Economics at your fingertips  
 

Unravelling spatiotemporal propagation processes among meteorological, soil, and evaporative flash droughts from a three-dimensional perspective

Chen Hu, Dunxian She, Gangsheng Wang, Liping Zhang, Zhaoxia Jing, Zhihong Song and Jun Xia

Agricultural Water Management, 2025, vol. 308, issue C

Abstract: Flash droughts, defined by their rapid development and intensification, have received growing attention due to their severe impacts. Understanding the mechanisms and evolutions of flash drought events is crucial for early warning and mitigation. However, research on the propagation processes among different flash drought types remains limited. Here we developed a spatiotemporal matching framework to identify propagation processes among meteorological, soil, and evaporative flash droughts from a three-dimensional perspective, applying it to the middle and lower reaches of Yangtze River Basin (MLRYRB) from 2000 to 2022. Additionally, we utilized the random forest model to identify critical factors influencing flash drought propagation. Results showed that among three flash drought types, evaporative flash droughts exhibited the lowest number, duration, and severity, while soil flash droughts displayed the highest. The spatiotemporal matching framework identified 21 meteorological-soil, 12 meteorological-evaporative, 10 soil-evaporative, 19 evaporative-soil, 8 meteorological-soil-evaporative, and 4 meteorological-evaporative-soil flash drought propagation events in the MLRYRB, whereas minor flash droughts with short durations and limited areas failed to pair. Propagation towards evaporative flash droughts was associated with reduced duration, areas, and severity, while intensifying characteristics of flash droughts were observed in the propagation towards soil flash droughts. Vapor pressure deficit (VPD) and temperature were the main factors influencing propagations toward soil and evaporative flash droughts, respectively. Our findings can provide valuable insights into flash drought propagation processes and mechanisms, aiding in the establishment of flash drought early warning system and supporting policymakers in formulating adaptive agricultural water supply polices.

Keywords: Flash drought types; Flash drought transition; Spatiotemporal dynamics; Drought events matching; Yangtze River Basin (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377425000083
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:308:y:2025:i:c:s0378377425000083

DOI: 10.1016/j.agwat.2025.109294

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-31
Handle: RePEc:eee:agiwat:v:308:y:2025:i:c:s0378377425000083