EconPapers    
Economics at your fingertips  
 

Spatiotemporal optimization of irrigation practices for winter wheat in China: Rationale, implications, and solutions

Luchen Zhang, Yuan Cao, Weihao Qian, Junning Tian, Shengshi Huang, Xiaolei Qiu, Bing Liu, Liang Tang, Liujun Xiao, Weixing Cao, Yan Zhu and Leilei Liu

Agricultural Water Management, 2025, vol. 308, issue C

Abstract: In recent years, the increasing frequency and intensity of drought events have posed significant challenges to wheat production in China, making irrigation a crucial measure to mitigate associated yield losses. However, the escalating issues of water scarcity and groundwater depletion necessitate the development of strategies to reduce water use while sustaining crop production. In this study, the Crop Water Deficit Index (CWDI) and Moisture Index (MI) were employed to assess the drought stress and its impact on yield within the main winter wheat production region of China. Subsequently, a multi-model ensemble approach integrated with a multi-objective optimization algorithm was utilized to propose the optimized irrigation strategies, which could enhance water use efficiency while attaining high yields. The results showed a continuous increase in drought stress over the past four decades, with the North Subregion (NS) and Huang-Huai Subregion (HHS) experienced more severe drought stress, while drought stress in the Middle-Lower Reaches of Yangzi River Subregion (MYS) increased the most. Drought stress was most severe during the jointing to heading period; furthermore, the greatest increase in drought stress was also observed during this period. Over the past four decades, due to the intensification of drought stress, winter wheat yield in China has been declining at a rate of 0.36 % per year. Compared to the irrigation practices of farmers, the optimal irrigation practices not only increased the wheat yield, water use efficiency (WUE), and irrigation water use efficiency (IWUE) by 468–5034 kg·ha−1, 1–13 kg·ha−1·mm−1, and 1–30 kg·ha−1·mm−1, respectively, but also reduced the irrigation amount and frequency by 4–118 mm and 0–2 times, respectively. The findings offer a method for quantitatively predicting and warning of the impacts of drought stress, and meanwhile support the formulation of irrigation strategies that maximize crop yield and water use efficiency and reducing water consumption in China.

Keywords: Drought stress; Irrigation; Yield; Water use efficiency; Multi-model; Wheat (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377425000113
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:308:y:2025:i:c:s0378377425000113

DOI: 10.1016/j.agwat.2025.109297

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-05
Handle: RePEc:eee:agiwat:v:308:y:2025:i:c:s0378377425000113