A new regional reference evapotranspiration model based on quantile approximation of meteorological variables
Guomin Huang,
Jianhua Dong,
Lifeng Wu,
Jingwei Luo,
Rangjian Qiu,
Yaokui Cui and
Yicheng Wang
Agricultural Water Management, 2025, vol. 308, issue C
Abstract:
Reference evapotranspiration (ETo) is a variable that can assist in estimating agricultural water use in water-scarce regions. Estimating ETo with limited data is an important alternative to overcome the current shortage of meteorological data in many areas around the world. For this purpose, this study introduces a new method for establishing a simplified regional ETo model. The method, which creating ETo models based on temperature at meteorological stations that have the highest quantile matching with the target station's meteorological variables based on the closest meteorological data characteristics. To test the performance of the new method, we used data from 120 meteorological stations in Northwest China from 2000 to 2021 to develop XGBoost models to establish the new regional ETo model. We compared the proposed method with local models and two conventional regional ETo models to evaluate its performance. While the new method increased the Root Mean Square Error (RMSE) by an average of 13.4 % compared to local models, it demonstrated significant advantages over conventional regional models. Specifically, the RMSE decreased by 6.4–7.1 %, the Normalized RMSE (NRMSE) decreased by 5.5–7.3 %, computation time was reduced by 18.4–21.8 times, and spatial memory usage was reduced by 147–211 %. These improvements make the proposed method more efficient and scalable, particularly for regional applications in data-scarce areas.
Keywords: XGBoost; Generalized model; Northwest China; Arid and semi arid region; Temperature based model; Cross station (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377425000137
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:308:y:2025:i:c:s0378377425000137
DOI: 10.1016/j.agwat.2025.109299
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().