A novel agricultural drought index based on multi-source remote sensing data and interpretable machine learning
Hao Chen,
Ni Yang,
Xuanhua Song,
Chunhua Lu,
Menglan Lu,
Tan Chen and
Shulin Deng
Agricultural Water Management, 2025, vol. 308, issue C
Abstract:
Drought is a frequent, destructive, and complex natural hazard, and seriously threatens eco-environment, socio-economy, and the health of human. Previous studies suggested that integrated multi-source remote sensing drought indices have the potential to comprehensively monitor drought conditions, however most existing integrated drought indices still have several limitations. Here, we used solar-induced chlorophyll fluorescence, water balance, soil moisture, and land surface temperature to develop a new integrated remote sensing drought index, namely interpretable machine learning drought index (IMLDI), based on the Bayesian optimized tree-based Light Gradient Boosting Machine and SHapley Additive exPlainations. The different land cover types were further considered, and the categories of drought severity were objectively determined by the iterative optimized method. The drought monitoring performance of IMLDI was validated in the eastern parts of China, and three integrated drought indies composited by PCA, multiple linear regression, and gradient boosting method were also included for comparison. The results show that IMLDI has a higher spatial and temporal consistency with standardized precipitation evapotranspiration index, can better reflect the real-world observed drought-affected cropland areas and gross primary production, and can also well describe the evolutions of 2009/2010 and 2019 drought events in the eastern parts of China, indicating higher drought monitoring performance of IMLDI. Besides, IMLDI-based agricultural drought risk analysis shows that the Huang-Hai Region and Yunnan, Guizhou, and Guangxi Provinces have a high risk to suffer from severe agricultural droughts. Overall, IMLDI has a great potential to use as a new integrated remote sensing drought index for agricultural drought monitoring.
Keywords: Interpretable machine learning drought index (IMLDI); Agricultural drought monitoring; Solar-induced chlorophyll fluorescence; The eastern parts of China (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377425000174
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:308:y:2025:i:c:s0378377425000174
DOI: 10.1016/j.agwat.2025.109303
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().