Optimizing water-use efficiency under elevated CO₂: A meta-analysis of crop type, soil modulation, and enrichment methods
Ali Mokhtar,
Hongming He,
Samar Attaher,
Ali Salem and
Muneer Alam
Agricultural Water Management, 2025, vol. 309, issue C
Abstract:
Elevated CO2 (eCO2) significantly affect the carbon-water cycle in terrestrial ecosystems especially for gas exchange and water use efficiency (WUE). Therefore, in this study, we have conducted a meta-analysis to quantitative statistical means among studies and discuss how WUE responds to eCO2 under pathway (C3 and C4), four enrichment methods and soil types based on 124 peer-reviewed studies and 1474 observations to provide an in-depth overview of how these factors interact under future CO₂ scenarios. Key findings reveal that: (1) C₃ crops, such as potato and tomato, show significantly greater increases in WUE compared to C₄ crops like maize, with effect sizes of 13.96 and 7.02 for plant-level WUE (WUEₚ), suggesting that C₃ crops may be more advantageous in water-limited environments due to reduced photorespiration under eCO₂; (2) soil type substantially modulates WUE responses, with clay soils, due to their high water-holding capacity, demonstrating the highest WUE enhancements (effect sizes of 7.87 for WUEₚ and 12.54 for yield WUE, WUEᵧ), while sandy soils, characterized by rapid drainage, showed limited improvements; and (3) greenhouse and growth chamber studies displayed the highest WUE improvements, while FACE experiments, which better replicate real-world conditions, indicated smaller WUE increases due to environmental variability, underscoring the need for a hybrid approach that merges controlled data with field insights to develop practical, water-efficient agricultural strategies. Collectively, these findings highlight the potential for crop- and soil-specific strategies to optimize WUE under elevated CO₂, offering valuable insights for sustainable agriculture and climate adaptation.
Keywords: Elevated CO2; Photosynthetic rate; Stomatal conductance; Water use efficiency; Yield; Meta-analysis; Random effect model (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377425000265
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:309:y:2025:i:c:s0378377425000265
DOI: 10.1016/j.agwat.2025.109312
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().